The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers.


Journal

Cancer metastasis reviews
ISSN: 1573-7233
Titre abrégé: Cancer Metastasis Rev
Pays: Netherlands
ID NLM: 8605731

Informations de publication

Date de publication:
06 2021
Historique:
received: 09 03 2021
accepted: 30 04 2021
pubmed: 12 5 2021
medline: 25 8 2021
entrez: 11 5 2021
Statut: ppublish

Résumé

Breast and prostate cancers have a great propensity to metastasize to long bones. The development of bone metastases is life-threatening, incurable, and drastically reduces patients' quality of life. The chemokines CCL2 and CXCL12 and their respective receptors, CCR2 and CXCR4, are central instigators involved in all stages leading to cancer cell dissemination and secondary tumor formation in distant target organs. They orchestrate tumor cell survival, growth and migration, tumor invasion and angiogenesis, and the formation of micrometastases in the bone marrow. The bone niche is of particular importance in metastasis formation, as it expresses high levels of CCL2 and CXCL12, which attract tumor cells and contribute to malignancy. The limited number of available effective treatment strategies highlights the need to better understand the pathophysiology of bone metastases and reduce the skeletal tumor burden in patients diagnosed with metastatic bone disease. This review focuses on the involvement of the CCL2/CCR2 and CXCL12/CXCR4 chemokine axes in the formation and development of bone metastases, as well as on therapeutic perspectives aimed at targeting these chemokine-receptor pairs.

Identifiants

pubmed: 33973098
doi: 10.1007/s10555-021-09974-2
pii: 10.1007/s10555-021-09974-2
doi:

Substances chimiques

Chemokine CCL2 0
Chemokine CXCL12 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

427-445

Subventions

Organisme : CIHR
ID : FDN-148413
Pays : Canada

Références

Paget, S. (1989). The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Reviews, 8(2), 98–101.
pubmed: 2673568
Peinado, H., Zhang, H., Matei, I. R., Costa-Silva, B., Hoshino, A., Rodrigues, G., et al. (2017). Pre-metastatic niches: Organ-specific homes for metastases. Nature Reviews Cancer, 17(5), 302–317. https://doi.org/10.1038/nrc.2017.6 .
doi: 10.1038/nrc.2017.6 pubmed: 28303905
Coleman, R. E. (2001). Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treatment Reviews, 27(3), 165–176. https://doi.org/10.1053/ctrv.2000.0210 .
doi: 10.1053/ctrv.2000.0210 pubmed: 11417967
Shah, R. B., Mehra, R., Chinnaiyan, A. M., Shen, R., Ghosh, D., Zhou, M., et al. (2004). Androgen-independent prostate cancer is a heterogeneous group of diseases: Lessons from a rapid autopsy program. Cancer Research, 64(24), 9209–9216. https://doi.org/10.1158/0008-5472.CAN-04-2442 .
doi: 10.1158/0008-5472.CAN-04-2442 pubmed: 15604294
Wang, J., Loberg, R., & Taichman, R. S. (2006). The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Reviews, 25(4), 573–587. https://doi.org/10.1007/s10555-006-9019-x .
doi: 10.1007/s10555-006-9019-x pubmed: 17165132
Weilbaecher, K. N., Guise, T. A., & McCauley, L. K. (2011). Cancer to bone: A fatal attraction. Nature Reviews. Cancer, 11(6), 411–425. https://doi.org/10.1038/nrc3055 .
doi: 10.1038/nrc3055 pubmed: 21593787
Clezardin, P., & Teti, A. (2007). Bone metastasis: Pathogenesis and therapeutic implications. Clinical & Experimental Metastasis, 24(8), 599–608. https://doi.org/10.1007/s10585-007-9112-8 .
doi: 10.1007/s10585-007-9112-8
Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(20 Pt 2), 6243s–6249s. https://doi.org/10.1158/1078-0432.CCR-06-0931 .
doi: 10.1158/1078-0432.CCR-06-0931
Müller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56. https://doi.org/10.1038/35065016 .
doi: 10.1038/35065016 pubmed: 11242036
Teicher, B. A., & Fricker, S. P. (2010). CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clinical Cancer Research, 16(11), 2927. https://doi.org/10.1158/1078-0432.CCR-09-2329 .
doi: 10.1158/1078-0432.CCR-09-2329 pubmed: 20484021
Rucci, N., & Teti, A. (2018). Osteomimicry: How the seed grows in the soil. Calcified Tissue International, 102(2), 131–140. https://doi.org/10.1007/s00223-017-0365-1 .
doi: 10.1007/s00223-017-0365-1 pubmed: 29147721
Mundy, G. R. (2002). Metastasis to bone: Causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2(8), 584–593. https://doi.org/10.1038/nrc867 .
doi: 10.1038/nrc867 pubmed: 12154351
Padalecki, S. S., & Guise, T. A. (2002). Actions of bisphosphonates in animal models of breast cancer. Breast Cancer Research, 4(1), 35–41. https://doi.org/10.1186/bcr415 .
doi: 10.1186/bcr415 pubmed: 11879558
Bonfil, R. D., Chinni, S., Fridman, R., Kim, H.-R., & Cher, M. L. (2007). Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urologic Oncology: Seminars and Original Investigations, 25(5), 407–411. https://doi.org/10.1016/j.urolonc.2007.05.008 .
doi: 10.1016/j.urolonc.2007.05.008 pubmed: 17826661
Kitamura, T., Qian, B.-Z., Soong, D., Cassetta, L., Noy, R., Sugano, G., et al. (2015). CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. The Journal of Experimental Medicine, 212(7), 1043–1059. https://doi.org/10.1084/jem.20141836 .
doi: 10.1084/jem.20141836 pubmed: 26056232 pmcid: 4493415
Vasconcelos, I., Hussainzada, A., Berger, S., Fietze, E., Linke, J., Siedentopf, F., & Schoenegg, W. (2016). The St. Gallen surrogate classification for breast cancer subtypes successfully predicts tumor presenting features, nodal involvement, recurrence patterns and disease free survival. Breast (Edinburgh, Scotland), 29, 181–185. https://doi.org/10.1016/j.breast.2016.07.016 .
doi: 10.1016/j.breast.2016.07.016
Kondov, B., Milenkovikj, Z., Kondov, G., Petrushevska, G., Basheska, N., Bogdanovska-Todorovska, M., et al. (2018). Presentation of the molecular subtypes of breast cancer detected by immunohistochemistry in surgically treated patients. Open Access Macedonian Journal of Medical Sciences, 6(6), 961–967. https://doi.org/10.3889/oamjms.2018.231 .
doi: 10.3889/oamjms.2018.231 pubmed: 29983785 pmcid: 6026408
Munjal, A., & Leslie, S. W. (2020). Gleason score. In StatPearls. StatPearls Publishing Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK553178/ .
Sehn, J. K. (2018). Prostate cancer pathology: Recent updates and controversies. Missouri Medicine, 115(2), 151–155.
pubmed: 30228708 pmcid: 6139855
Zlotnik, A., Burkhardt, A. M., & Homey, B. (2011). Homeostatic chemokine receptors and organ-specific metastasis. Nature Reviews Immunology, 11(9), 597–606. https://doi.org/10.1038/nri3049 .
doi: 10.1038/nri3049 pubmed: 21866172
Tanaka, S., Green, S. R., & Quehenberger, O. (2002). Differential expression of the isoforms for the monocyte chemoattractant protein-1 receptor, CCR2, in monocytes. Biochemical and Biophysical Research Communications, 290(1), 73–80. https://doi.org/10.1006/bbrc.2001.6149 .
doi: 10.1006/bbrc.2001.6149 pubmed: 11779135
Vicari, A. P., & Caux, C. (2002). Chemokines in cancer. Cytokine & Growth Factor Reviews, 13(2), 143–154. https://doi.org/10.1016/s1359-6101(01)00033-8 .
doi: 10.1016/s1359-6101(01)00033-8
Loberg, R. D., Day, L. L., Harwood, J., Ying, C., St. John, L. N., Giles, R., et al. (2006). CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia (New York, N.Y.), 8(7), 578–586.
doi: 10.1593/neo.06280
Fujimoto, H., Sangai, T., Ishii, G., Ikehara, A., Nagashima, T., Miyazaki, M., & Ochiai, A. (2009). Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. International Journal of Cancer, 125(6), 1276–1284. https://doi.org/10.1002/ijc.24378 .
doi: 10.1002/ijc.24378 pubmed: 19479998
Nakashima, E., Mukaida, N., Kubota, Y., Kuno, K., Yasumoto, K., Ichimura, F., et al. (1995). Human MCAF gene transfer enhances the metastatic capacity of a mouse cachectic adenocarcinoma cell line in vivo. Pharmaceutical Research, 12(11), 1598–1604. https://doi.org/10.1023/A:1016276613684 .
doi: 10.1023/A:1016276613684 pubmed: 8592656
Greenbaum, A., Hsu, Y.-M. S., Day, R. B., Schuettpelz, L. G., Christopher, M. J., Borgerding, J. N., et al. (2013). CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature, 495(7440), 227–230. https://doi.org/10.1038/nature11926 .
doi: 10.1038/nature11926 pubmed: 23434756 pmcid: 3600148
Ma, Q., Jones, D., Borghesani, P. R., Segal, R. A., Nagasawa, T., Kishimoto, T., et al. (1998). Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 95(16), 9448–9453. https://doi.org/10.1073/pnas.95.16.9448 .
doi: 10.1073/pnas.95.16.9448 pubmed: 9689100 pmcid: 21358
Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382(6592), 635–638. https://doi.org/10.1038/382635a0 .
doi: 10.1038/382635a0 pubmed: 8757135
McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K., & Palis, J. (1999). Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Developmental Biology, 213(2), 442–456. https://doi.org/10.1006/dbio.1999.9405 .
doi: 10.1006/dbio.1999.9405 pubmed: 10479460
Mirshahi, F., Pourtau, J., Li, H., Muraine, M., Trochon, V., Legrand, E., et al. (2000). SDF-1 Activity on microvascular endothelial cells: Consequences on angiogenesis in in vitro and in vivo models. Thrombosis Research, 99(6), 587–594. https://doi.org/10.1016/S0049-3848(00)00292-9 .
doi: 10.1016/S0049-3848(00)00292-9 pubmed: 10974345
Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor CXCR4. Seminars in Cancer Biology, 14(3), 171–179. https://doi.org/10.1016/j.semcancer.2003.10.003 .
doi: 10.1016/j.semcancer.2003.10.003 pubmed: 15246052
Chinni, S. R., Sivalogan, S., Dong, Z., Filho, J. C. T., Deng, X., Bonfil, R. D., & Cher, M. L. (2006). CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. The Prostate, 66(1), 32–48. https://doi.org/10.1002/pros.20318 .
doi: 10.1002/pros.20318 pubmed: 16114056
Sun, Y.-X., Wang, J., Shelburne, C. E., Lopatin, D. E., Chinnaiyan, A. M., Rubin, M. A., et al. (2003). Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. Journal of Cellular Biochemistry, 89(3), 462–473. https://doi.org/10.1002/jcb.10522 .
doi: 10.1002/jcb.10522 pubmed: 12761880
Akashi, T., Koizumi, K., Tsuneyama, K., Saiki, I., Takano, Y., & Fuse, H. (2008). Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Science, 99(3), 539–542. https://doi.org/10.1111/j.1349-7006.2007.00712.x .
doi: 10.1111/j.1349-7006.2007.00712.x pubmed: 18201276
Zhao, H., Guo, L., Zhao, H., Zhao, J., Weng, H., & Zhao, B. (2014). CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget, 6(7), 5022–5040.
doi: 10.18632/oncotarget.3217
Lee, J. Y., Kang, D. H., Chung, D. Y., Kwon, J. K., Lee, H., Cho, N. H., et al. (2014). Meta-analysis of the relationship between CXCR4 expression and metastasis in prostate cancer. The World Journal of Men’s Health, 32(3), 167–175. https://doi.org/10.5534/wjmh.2014.32.3.167 .
doi: 10.5534/wjmh.2014.32.3.167 pubmed: 25606566 pmcid: 4298820
van Furth, R., & Cohn, Z. A. (1968). The origin and kinetics of mononuclear phagocytes. The Journal of Experimental Medicine, 128(3), 415–435.
doi: 10.1084/jem.128.3.415
Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19(1), 71–82. https://doi.org/10.1016/s1074-7613(03)00174-2 .
doi: 10.1016/s1074-7613(03)00174-2 pubmed: 12871640
Serbina, N. V., & Pamer, E. G. (2006). Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature Immunology, 7(3), 311–317. https://doi.org/10.1038/ni1309 .
doi: 10.1038/ni1309 pubmed: 16462739
Yona, S., Kim, K.-W., Wolf, Y., Mildner, A., Varol, D., Breker, M., et al. (2013). Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity, 38(1), 79–91. https://doi.org/10.1016/j.immuni.2012.12.001 .
doi: 10.1016/j.immuni.2012.12.001 pubmed: 23273845
Teh, Y. C., Ding, J. L., Ng, L. G., & Chong, S. Z. (2019). Capturing the fantastic voyage of monocytes through time and space. Frontiers in Immunology, 10, 834. https://doi.org/10.3389/fimmu.2019.00834 .
doi: 10.3389/fimmu.2019.00834 pubmed: 31040854 pmcid: 6476989
Katayama, Y., Battista, M., Kao, W.-M., Hidalgo, A., Peired, A. J., Thomas, S. A., & Frenette, P. S. (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124(2), 407–421. https://doi.org/10.1016/j.cell.2005.10.041 .
doi: 10.1016/j.cell.2005.10.041 pubmed: 16439213
Chong, S. Z., Evrard, M., Devi, S., Chen, J., Lim, J. Y., See, P., et al. (2016). CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. The Journal of Experimental Medicine, 213(11), 2293–2314. https://doi.org/10.1084/jem.20160800 .
doi: 10.1084/jem.20160800 pubmed: 27811056 pmcid: 5068243
Bonapace, L., Coissieux, M.-M., Wyckoff, J., Mertz, K. D., Varga, Z., Junt, T., & Bentires-Alj, M. (2014). Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature, 515(7525), 130–133. https://doi.org/10.1038/nature13862 .
doi: 10.1038/nature13862 pubmed: 25337873
Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., et al. (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science (New York, N.Y.), 317(5838), 666–670. https://doi.org/10.1126/science.1142883 .
doi: 10.1126/science.1142883
Ginhoux, F., & Guilliams, M. (2016). Tissue-resident macrophage ontogeny and homeostasis. Immunity, 44(3), 439–449 http://dx.doi.org.ezproxy.usherbrooke.ca/10.1016/j.immuni.2016.02.024 .
doi: 10.1016/j.immuni.2016.02.024
Shi, C., & Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature Reviews. Immunology, 11(11), 762–774. https://doi.org/10.1038/nri3070 .
doi: 10.1038/nri3070 pubmed: 21984070 pmcid: 3947780
Qian, B.-Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51. https://doi.org/10.1016/j.cell.2010.03.014 .
doi: 10.1016/j.cell.2010.03.014 pubmed: 20371344 pmcid: 4994190
Wellenstein, M. D., & de Visser, K. E. (2018). Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity, 48(3), 399–416. https://doi.org/10.1016/j.immuni.2018.03.004 .
doi: 10.1016/j.immuni.2018.03.004 pubmed: 29562192 pmcid: 29562192
Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196(3), 254–265. https://doi.org/10.1002/path.1027 .
doi: 10.1002/path.1027 pubmed: 11857487
DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1, 54–67. https://doi.org/10.1158/2159-8274.CD-10-0028 .
doi: 10.1158/2159-8274.CD-10-0028 pubmed: 22039576 pmcid: 3203524
Gentles, A. J., Newman, A. M., Liu, C. L., Bratman, S. V., Feng, W., Kim, D., et al. (2015). The prognostic landscape of genes and infiltrating immune cells across human cancers. Nature Medicine, 21(8), 938–945. https://doi.org/10.1038/nm.3909 .
doi: 10.1038/nm.3909 pubmed: 26193342 pmcid: 4852857
Raskov, H., Orhan, A., Christensen, J. P., & Gögenur, I. (2020). Cytotoxic CD8 + T cells in cancer and cancer immunotherapy. British Journal of Cancer, 1–9. https://doi.org/10.1038/s41416-020-01048-4 .
Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Research, 70(19), 7465–7475. https://doi.org/10.1158/0008-5472.CAN-10-1439 .
doi: 10.1158/0008-5472.CAN-10-1439 pubmed: 20841473 pmcid: 2948598
Gordon, S., & Plüddemann, A. (2019). The mononuclear phagocytic system. Generation of Diversity. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.01893 .
Gabrilovich, D. I. (2017). Myeloid-derived suppressor cells. Cancer Immunology Research, 5(1), 3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297 .
doi: 10.1158/2326-6066.CIR-16-0297 pubmed: 28052991 pmcid: 5426480
Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J.-I., Cheng, P., et al. (2010). HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453. https://doi.org/10.1084/jem.20100587 .
doi: 10.1084/jem.20100587 pubmed: 20876310 pmcid: 2964584
Cassetta, L., Fragkogianni, S., Sims, A. H., Swierczak, A., Forrester, L. M., Zhang, H., et al. (2019). Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell, 35(4), 588–602.e10. https://doi.org/10.1016/j.ccell.2019.02.009 .
doi: 10.1016/j.ccell.2019.02.009 pubmed: 30930117 pmcid: 6472943
Dutrochet, H. (1824). Recherches anatomiques et physiologiques sur la structure intime des animaux et des végétaux, et sur leur motilité. J.B. Baillière.
Ley, K., Laudanna, C., Cybulsky, M. I., & Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology, 7(9), 678–689. https://doi.org/10.1038/nri2156 .
doi: 10.1038/nri2156 pubmed: 17717539
Lu, X., & Kang, Y. (2009). Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. The Journal of Biological Chemistry, 284(42), 29087–29096. https://doi.org/10.1074/jbc.M109.035899 .
doi: 10.1074/jbc.M109.035899 pubmed: 19720836 pmcid: 2781454
Solinas, G., Germano, G., Mantovani, A., & Allavena, P. (2009). Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. Journal of Leukocyte Biology, 86(5), 1065–1073. https://doi.org/10.1189/jlb.0609385 .
doi: 10.1189/jlb.0609385 pubmed: 19741157
Roblek, M., Protsyuk, D., Becker, P. F., Stefanescu, C., Gorzelanny, C., Glaus Garzon, J. F., et al. (2019). CCL2 is a vascular permeability factor inducing CCR2-dependent endothelial retraction during lung metastasis. Molecular Cancer Research, 17(3), 783–793. https://doi.org/10.1158/1541-7786.MCR-18-0530 .
doi: 10.1158/1541-7786.MCR-18-0530 pubmed: 30552233
Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354. https://doi.org/10.1074/jbc.M109.042671 .
doi: 10.1074/jbc.M109.042671 pubmed: 19833726 pmcid: 2797202
Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56(20), 4625–4629.
pubmed: 8840975
Li, D., Ji, H., Niu, X., Yin, L., Wang, Y., Gu, Y., et al. (2020). Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer. Cancer Science, 111(1), 47–58. https://doi.org/10.1111/cas.14230 .
doi: 10.1111/cas.14230 pubmed: 31710162
Ahirwar, D. K., Nasser, M. W., Ouseph, M. M., Elbaz, M., Cuitiño, M. C., Kladney, R. D., et al. (2018). Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation. Oncogene, 37(32), 4428–4442. https://doi.org/10.1038/s41388-018-0263-7 .
doi: 10.1038/s41388-018-0263-7 pubmed: 29720724 pmcid: 7063845
Wang, Z., Ma, Y., Yu, X., Niu, Q., Han, Z., Wang, H., et al. (2018). Targeting CXCR4–CXCL12 axis for visualizing, predicting, and inhibiting breast cancer metastasis with theranostic AMD3100–Ag2S quantum dot probe. Advanced Functional Materials, 28(23), 1800732. https://doi.org/10.1002/adfm.201800732 .
doi: 10.1002/adfm.201800732
Darash-Yahana, M., Pikarsky, E., Abramovitch, R., Zeira, E., Pal, B., Karplus, R., et al. (2004). Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. The FASEB Journal, 18(11), 1240–1242. https://doi.org/10.1096/fj.03-0935fje .
doi: 10.1096/fj.03-0935fje pubmed: 15180966
Devignes, C.-S., Aslan, Y., Brenot, A., Devillers, A., Schepers, K., Fabre, S., et al. (2018). HIF signaling in osteoblast-lineage cells promotes systemic breast cancer growth and metastasis in mice. Proceedings of the National Academy of Sciences, 115(5), E992–E1001. https://doi.org/10.1073/pnas.1718009115 .
doi: 10.1073/pnas.1718009115
Guo, M., Cai, C., Zhao, G., Qiu, X., Zhao, H., Ma, Q., et al. (2014). Hypoxia promotes migration and induces CXCR4 expression via HIF-1α activation in human osteosarcoma. PLoS One, 9(3). https://doi.org/10.1371/journal.pone.0090518 .
Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S. K., Doni, A., Rapisarda, A., et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. The Journal of Experimental Medicine, 198(9), 1391–1402. https://doi.org/10.1084/jem.20030267 .
doi: 10.1084/jem.20030267 pubmed: 14597738 pmcid: 2194248
Zagzag, D., Lukyanov, Y., Lan, L., Ali, M. A., Esencay, M., Mendez, O., et al. (2006). Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Laboratory Investigation, 86(12), 1221–1232. https://doi.org/10.1038/labinvest.3700482 .
doi: 10.1038/labinvest.3700482 pubmed: 17075581
Knowles, H. J., & Harris, A. L. (2007). Macrophages and the hypoxic tumour microenvironment. Frontiers in Bioscience: a Journal and Virtual Library, 12, 4298–4314. https://doi.org/10.2741/2389 .
doi: 10.2741/2389
Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A., & Springer, T. A. (1996). A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). The Journal of Experimental Medicine, 184(3), 1101–1109. https://doi.org/10.1084/jem.184.3.1101 .
doi: 10.1084/jem.184.3.1101 pubmed: 9064327
Burger, J. A., Burger, M., & Kipps, T. J. (1999). Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood, 94(11), 3658–3667.
doi: 10.1182/blood.V94.11.3658
Sun, X., Cheng, G., Hao, M., Zheng, J., Zhou, X., Zhang, J., et al. (2010). CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer and Metastasis Reviews, 29(4), 709–722. https://doi.org/10.1007/s10555-010-9256-x .
doi: 10.1007/s10555-010-9256-x pubmed: 20839032
Brigati, C., Noonan, D. M., Albini, A., & Benelli, R. (2002). Tumors and inflammatory infiltrates: friends or foes? Clinical & Experimental Metastasis, 19(3), 247–258. https://doi.org/10.1023/a:1015587423262 .
doi: 10.1023/a:1015587423262
Saji, H., Koike, M., Yamori, T., Saji, S., Seiki, M., Matsushima, K., & Toi, M. (2001). Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer, 92(5), 1085–1091. https://doi.org/10.1002/1097-0142(20010901)92:5<1085::aid-cncr1424>3.0.co;2-k .
Walter, S., Bottazzi, B., Govoni, D., Colotta, F., & Mantovani, A. (1991). Macrophage infiltration and growth of sarcoma clones expressing different amounts of monocyte chemotactic protein/JE. International Journal of Cancer, 49(3), 431–435. https://doi.org/10.1002/ijc.2910490321 .
doi: 10.1002/ijc.2910490321 pubmed: 1655661
Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6(8), 3282–3289.
pubmed: 10955814
Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899. https://doi.org/10.1016/j.cell.2010.01.025 .
doi: 10.1016/j.cell.2010.01.025 pubmed: 20303878 pmcid: 2866629
Fang, W. B., Jokar, I., Zou, A., Lambert, D., Dendukuri, P., & Cheng, N. (2012). CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 Protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms *. Journal of Biological Chemistry, 287(43), 36593–36608. https://doi.org/10.1074/jbc.M112.365999 .
doi: 10.1074/jbc.M112.365999
Fang, W. B., Yao, M., Brummer, G., Acevedo, D., Alhakamy, N., Berkland, C., & Cheng, N. (2016). Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget, 7(31), 49349–49367. https://doi.org/10.18632/oncotarget.9885 .
doi: 10.18632/oncotarget.9885 pubmed: 27283985 pmcid: 5226513
Li, M., Knight, D. A. A., Snyder, L., Smyth, M. J., & Stewart, T. J. (2013). A role for CCL2 in both tumor progression and immunosurveillance. Oncoimmunology, 2(7). https://doi.org/10.4161/onci.25474 .
Lu, Y., Cai, Z., Xiao, G., Liu, Y., Keller, E. T., Yao, Z., & Zhang, J. (2007). CCR2 expression correlates with prostate cancer progression. Journal of Cellular Biochemistry, 101(3), 676–685. https://doi.org/10.1002/jcb.21220 .
doi: 10.1002/jcb.21220 pubmed: 17216598
Lu, Y., Cai, Z., Galson, D. L., Xiao, G., Liu, Y., George, D. E., et al. (2006). Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. The Prostate, 66(12), 1311–1318. https://doi.org/10.1002/pros.20464 .
doi: 10.1002/pros.20464 pubmed: 16705739
Lavender, N., Yang, J., Chen, S.-C., Sai, J., Johnson, C. A., Owens, P., et al. (2017). The Yin/Yan of CCL2: a minor role in neutrophil anti-tumor activity in vitro but a major role on the outgrowth of metastatic breast cancer lesions in the lung in vivo. BMC Cancer, 17(1), 88. https://doi.org/10.1186/s12885-017-3074-2 .
doi: 10.1186/s12885-017-3074-2 pubmed: 28143493 pmcid: 5286656
Nesbit, M., Schaider, H., Miller, T. H., & Herlyn, M. (2001). Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. Journal of Immunology (Baltimore, Md. : 1950), 166(11), 6483–6490. https://doi.org/10.4049/jimmunol.166.11.6483 .
doi: 10.4049/jimmunol.166.11.6483
Qian, B.-Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., et al. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475(7355), 222–225. https://doi.org/10.1038/nature10138 .
doi: 10.1038/nature10138 pubmed: 21654748 pmcid: 3208506
Chen, X., Wang, Y., Nelson, D., Tian, S., Mulvey, E., Patel, B., et al. (2016). CCL2/CCR2 regulates the tumor microenvironment in HER-2/neu-driven mammary carcinomas in mice. PLoS One, 11(11), e0165595. https://doi.org/10.1371/journal.pone.0165595 .
doi: 10.1371/journal.pone.0165595 pubmed: 27820834 pmcid: 5098736
Loberg, R. D., Ying, C., Craig, M., Day, L. L., Sargent, E., Neeley, C., et al. (2007). Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Research, 67(19), 9417–9424. https://doi.org/10.1158/0008-5472.CAN-07-1286 .
doi: 10.1158/0008-5472.CAN-07-1286 pubmed: 17909051
Fang, W. B., Yao, M., Jokar, I., Alhakamy, N., Berkland, C., Chen, J., et al. (2015). The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells. Breast Cancer Research and Treatment, 150(2), 309–320. https://doi.org/10.1007/s10549-015-3324-4 .
doi: 10.1007/s10549-015-3324-4 pubmed: 25744294 pmcid: 4456035
Fein, M. R., He, X.-Y., Almeida, A. S., Bružas, E., Pommier, A., Yan, R., et al. (2020). Cancer cell CCR2 orchestrates suppression of the adaptive immune response. Journal of Experimental Medicine, 217(10), e20181551. https://doi.org/10.1084/jem.20181551 .
doi: 10.1084/jem.20181551
Kersten, K., Coffelt, S. B., Hoogstraat, M., Verstegen, N. J. M., Vrijland, K., Ciampricotti, M., et al. (2017). Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of IL1β in tumor-associated macrophages. OncoImmunology, 6(8), e1334744. https://doi.org/10.1080/2162402X.2017.1334744 .
doi: 10.1080/2162402X.2017.1334744 pubmed: 28919995 pmcid: 5593698
Kudo-Saito, C., Shirako, H., Ohike, M., Tsukamoto, N., & Kawakami, Y. (2013). CCL2 is critical for immunosuppression to promote cancer metastasis. Clinical & Experimental Metastasis, 30(4), 393–405. https://doi.org/10.1007/s10585-012-9545-6 .
doi: 10.1007/s10585-012-9545-6
Peng, L., Shu, S., & Krauss, J. C. (1997). Monocyte chemoattractant protein inhibits the generation of tumor-reactive T cells. Cancer Research, 57(21), 4849–4854.
pubmed: 9354448
Conti, I., & Rollins, B. J. (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Seminars in Cancer Biology, 14(3), 149–154. https://doi.org/10.1016/j.semcancer.2003.10.009 .
doi: 10.1016/j.semcancer.2003.10.009 pubmed: 15246049
Jordan, J. T., Sun, W., Hussain, S. F., DeAngulo, G., Prabhu, S. S., & Heimberger, A. B. (2008). Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunology, Immunotherapy, 57(1), 123–131. https://doi.org/10.1007/s00262-007-0336-x .
doi: 10.1007/s00262-007-0336-x pubmed: 17522861
Terwey, T. H., Kim, T. D., Kochman, A. A., Hubbard, V. M., Lu, S., Zakrzewski, J. L., et al. (2005). CCR2 is required for CD8-induced graft-versus-host disease. Blood, 106(9), 3322–3330. https://doi.org/10.1182/blood-2005-05-1860 .
doi: 10.1182/blood-2005-05-1860 pubmed: 16037386 pmcid: 1895329
Barbero, S., Bonavia, R., Bajetto, A., Porcile, C., Pirani, P., Ravetti, J. L., et al. (2003). Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Research, 63(8), 1969–1974.
pubmed: 12702590
Begley, L. A., MacDonald, J. W., Day, M. L., & Macoska, J. A. (2007). CXCL12 activates a robust transcriptional response in human prostate epithelial cells. Journal of Biological Chemistry, 282(37), 26767–26774. https://doi.org/10.1074/jbc.M700440200 .
doi: 10.1074/jbc.M700440200
Vlahakis, S. R., Villasis-Keever, A., Gomez, T., Vanegas, M., Vlahakis, N., & Paya, C. V. (2002). G protein-coupled chemokine receptors induce both survival and apoptotic signaling pathways. Journal of Immunology (Baltimore, Md. : 1950), 169(10), 5546–5554. https://doi.org/10.4049/jimmunol.169.10.5546 .
doi: 10.4049/jimmunol.169.10.5546
Hall, J. M., & Korach, K. S. (2003). Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Molecular Endocrinology, 17(5), 792–803. https://doi.org/10.1210/me.2002-0438 .
doi: 10.1210/me.2002-0438 pubmed: 12586845
Hsu, E. L., Yoon, D., Choi, H. H., Wang, F., Taylor, R. T., Chen, N., et al. (2007). A proposed mechanism for the protective effect of dioxin against breast cancer. Toxicological Sciences: An Official Journal of the Society of Toxicology, 98(2), 436–444. https://doi.org/10.1093/toxsci/kfm125 .
doi: 10.1093/toxsci/kfm125
Cai, J., Kandagatla, P., Singareddy, R., Kropinski, A., Sheng, S., Cher, M. L., & Chinni, S. R. (2010). Androgens induce functional CXCR4 through ERG factor expression in TMPRSS2-ERG fusion-positive prostate cancer cells. Translational Oncology, 3(3), 195–203. https://doi.org/10.1593/tlo.09328 .
doi: 10.1593/tlo.09328 pubmed: 20563261 pmcid: 2887649
Azariadis, K., Kiagiadaki, F., Pelekanou, V., Bempi, V., Alexakis, K., Kampa, M., et al. (2017). Androgen triggers the pro-migratory CXCL12/CXCR4 axis in AR-positive breast cancer cell lines: underlying mechanism and possible implications for the use of aromatase inhibitors in breast cancer. Cellular Physiology and Biochemistry, 44(1), 66–84. https://doi.org/10.1159/000484584 .
doi: 10.1159/000484584 pubmed: 29131020
Domanska, U. M., Timmer-Bosscha, H., Nagengast, W. B., Oude Munnink, T. H., Kruizinga, R. C., Ananias, H. J. K., et al. (2012). CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia, 14(8), 709–718. https://doi.org/10.1593/neo.12324 .
doi: 10.1593/neo.12324 pubmed: 22952424 pmcid: 3431178
Luker, K. E., Lewin, S. A., Mihalko, L. A., Schmidt, B. T., Winkler, J. S., Coggins, N. L., et al. (2012). Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene, 31(45), 4750–4758. https://doi.org/10.1038/onc.2011.633 .
doi: 10.1038/onc.2011.633 pubmed: 22266857 pmcid: 3337948
Yan, M., Jene, N., Byrne, D., Millar, E. K., O’Toole, S. A., McNeil, C. M., et al. (2011). Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Research : BCR, 13(2), R47. https://doi.org/10.1186/bcr2869 .
doi: 10.1186/bcr2869 pubmed: 21521526 pmcid: 3219210
Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., et al. (2001). Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Medicine, 7(11), 1194–1201. https://doi.org/10.1038/nm1101-1194 .
doi: 10.1038/nm1101-1194 pubmed: 11689883
Kakinuma, T., & Hwang, S. T. (2006). Chemokines, chemokine receptors, and cancer metastasis. Journal of Leukocyte Biology, 79(4), 639–651. https://doi.org/10.1189/jlb.1105633 .
doi: 10.1189/jlb.1105633 pubmed: 16478915
Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., et al. (1995). The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. Journal of Biological Chemistry, 270(45), 27348–27357. https://doi.org/10.1074/jbc.270.45.27348 .
doi: 10.1074/jbc.270.45.27348
Li, X., Loberg, R., Liao, J., Ying, C., Snyder, L. A., Pienta, K. J., & McCauley, L. K. (2009). A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Research, 69(4), 1685–1692. https://doi.org/10.1158/0008-5472.CAN-08-2164 .
doi: 10.1158/0008-5472.CAN-08-2164 pubmed: 19176388 pmcid: 2698812
Salcedo, R., Ponce, M. L., Young, H. A., Wasserman, K., Ward, J. M., Kleinman, H. K., et al. (2000). Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood, 96(1), 34–40.
doi: 10.1182/blood.V96.1.34
Knowles, H., Leek, R., & Harris, A. L. (2004). Macrophage infiltration and angiogenesis in human malignancy. Novartis Foundation Symposium, 256, 189–200 discussion 200-204, 259–269.
pubmed: 15027491
Kryczek, I., Wei, S., Keller, E., Liu, R., & Zou, W. (2007). Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. American Journal of Physiology. Cell Physiology, 292(3), C987–C995. https://doi.org/10.1152/ajpcell.00406.2006 .
doi: 10.1152/ajpcell.00406.2006 pubmed: 16943240
Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5(4), 434–438. https://doi.org/10.1038/7434 .
doi: 10.1038/7434 pubmed: 10202935
Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–348. https://doi.org/10.1016/j.cell.2005.02.034 .
doi: 10.1016/j.cell.2005.02.034 pubmed: 15882617
Kawakami, Y., Ii, M., Matsumoto, T., Kuroda, R., Kuroda, T., Kwon, S.-M., et al. (2015). SDF-1/CXCR4 axis in Tie2-lineage cells including endothelial progenitor cells contributes to bone fracture healing. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 30(1), 95–105. https://doi.org/10.1002/jbmr.2318 .
doi: 10.1002/jbmr.2318
Yamaguchi, J., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107(9), 1322–1328. https://doi.org/10.1161/01.cir.0000055313.77510.22 .
doi: 10.1161/01.cir.0000055313.77510.22 pubmed: 12628955
Giampieri, S., Manning, C., Hooper, S., Jones, L., Hill, C. S., & Sahai, E. (2009). Localised and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biology, 11(11), 1287–1296. https://doi.org/10.1038/ncb1973 .
doi: 10.1038/ncb1973 pubmed: 19838175 pmcid: 2773241
Pang, M.-F., Georgoudaki, A.-M., Lambut, L., Johansson, J., Tabor, V., Hagikura, K., et al. (2016). TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene, 35(6), 748–760. https://doi.org/10.1038/onc.2015.133 .
doi: 10.1038/onc.2015.133 pubmed: 25961925
Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-β-induced epithelial to mesenchymal transition. Cell Research, 19(2), 156–172. https://doi.org/10.1038/cr.2009.5 .
doi: 10.1038/cr.2009.5 pubmed: 19153598
Shi, C.-L., Yu, C.-H., Zhang, Y., Zhao, D., Chang, X.-H., & Wang, W.-H. (2011). Monocyte chemoattractant protein-1 modulates invasion and apoptosis of PC-3M prostate cancer cells via regulating expression of VEGF, MMP9 and caspase-3. Asian Pacific Journal of Cancer Prevention : APJCP, 12(2), 555–559.
pubmed: 21545229
Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., et al. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 4(8), e6562. https://doi.org/10.1371/journal.pone.0006562 .
doi: 10.1371/journal.pone.0006562 pubmed: 19668347 pmcid: 2721818
Harney, A. S., Arwert, E. N., Entenberg, D., Wang, Y., Guo, P., Qian, B.-Z., et al. (2015). Real-time imaging reveals local, transient vascular permeability and tumor cell intravasation stimulated by Tie2Hi macrophage-derived VEGFA. Cancer Discovery, 5(9), 932–943. https://doi.org/10.1158/2159-8290.CD-15-0012 .
doi: 10.1158/2159-8290.CD-15-0012 pubmed: 26269515 pmcid: 4560669
Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67(6), 2649–2656. https://doi.org/10.1158/0008-5472.CAN-06-1823 .
doi: 10.1158/0008-5472.CAN-06-1823 pubmed: 17363585
Roh-Johnson, M., Bravo-Cordero, J. J., Patsialou, A., Sharma, V. P., Guo, P., Liu, H., et al. (2014). Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene, 33(33), 4203–4212. https://doi.org/10.1038/onc.2013.377 .
doi: 10.1038/onc.2013.377 pubmed: 24056963
Zhang, X. H.-F., Jin, X., Malladi, S., Zou, Y., Wen, Y. H., Brogi, E., et al. (2013). Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell, 154(5), 1060–1073. https://doi.org/10.1016/j.cell.2013.07.036 .
doi: 10.1016/j.cell.2013.07.036 pubmed: 23993096 pmcid: 3974915
Helbig, G., Christopherson, K. W., Bhat-Nakshatri, P., Kumar, S., Kishimoto, H., Miller, K. D., et al. (2003). NF-κ B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. Journal of Biological Chemistry, 278(24), 21631–21638. https://doi.org/10.1074/jbc.M300609200 .
doi: 10.1074/jbc.M300609200
Fernandis, A. Z., Prasad, A., Band, H., Klösel, R., & Ganju, R. K. (2004). Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene, 23(1), 157–167. https://doi.org/10.1038/sj.onc.1206910 .
doi: 10.1038/sj.onc.1206910 pubmed: 14712221
Singh, S., Singh, U. P., Grizzle, W. E., & Lillard, J. W. (2004). CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Laboratory Investigation; a Journal of Technical Methods and Pathology, 84(12), 1666–1676. https://doi.org/10.1038/labinvest.3700181 .
doi: 10.1038/labinvest.3700181 pubmed: 15467730
Engl, T., Relja, B., Marian, D., Blumenberg, C., Müller, I., Beecken, W.-D., et al. (2006). CXCR4 chemokine receptor mediates prostate tumor cell adhesion through α5 and β3 integrins. Neoplasia, 8(4), 290–301. https://doi.org/10.1593/neo.05694 .
doi: 10.1593/neo.05694 pubmed: 16756721 pmcid: 1600676
Fujita, M., Davari, P., Takada, Y. K., & Takada, Y. (2018). Stromal cell-derived factor-1 (CXCL12) activates integrins by direct binding to an allosteric ligand-binding site (site 2) of integrins without CXCR4. The Biochemical Journal, 475(4), 723–732. https://doi.org/10.1042/BCJ20170867 .
doi: 10.1042/BCJ20170867 pubmed: 29301984
Sun, Y.-X., Fang, M., Wang, J., Cooper, C. R., Pienta, K. J., & Taichman, R. S. (2007). Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. The Prostate, 67(1), 61–73. https://doi.org/10.1002/pros.20500 .
doi: 10.1002/pros.20500 pubmed: 17034033
Sanz-Rodríguez, F., Hidalgo, A., & Teixidó, J. (2001). Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood, 97(2), 346–351. https://doi.org/10.1182/blood.v97.2.346 .
doi: 10.1182/blood.v97.2.346 pubmed: 11154207
Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H., & Lyden, D. (2016). Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell, 30(6), 836–848. https://doi.org/10.1016/j.ccell.2016.10.009 .
doi: 10.1016/j.ccell.2016.10.009 pubmed: 27960084 pmcid: 5157696
Guo, Y., Ji, X., Liu, J., Fan, D., Zhou, Q., Chen, C., et al. (2019). Effects of exosomes on pre-metastatic niche formation in tumors. Molecular Cancer, 18(1), 39. https://doi.org/10.1186/s12943-019-0995-1 .
doi: 10.1186/s12943-019-0995-1 pubmed: 30857545 pmcid: 6413442
Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the “soil”: The premetastatic niche. Cancer Research, 66(23), 11089–11093. https://doi.org/10.1158/0008-5472.CAN-06-2407 .
doi: 10.1158/0008-5472.CAN-06-2407 pubmed: 17145848 pmcid: 2952469
Zeng, Z., Li, Y., Pan, Y., Lan, X., Song, F., Sun, J., et al. (2018). Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nature Communications, 9(1), 5395. https://doi.org/10.1038/s41467-018-07810-w .
doi: 10.1038/s41467-018-07810-w pubmed: 30568162 pmcid: 6300604
Zhou, W., Fong, M. Y., Min, Y., Somlo, G., Liu, L., Palomares, M. R., et al. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25(4), 501–515. https://doi.org/10.1016/j.ccr.2014.03.007 .
doi: 10.1016/j.ccr.2014.03.007 pubmed: 24735924 pmcid: 4016197
Kang, S.-A., Hasan, N., Mann, A. P., Zheng, W., Zhao, L., Morris, L., et al. (2015). Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis. Molecular Therapy, 23(6), 1044–1054. https://doi.org/10.1038/mt.2015.45 .
doi: 10.1038/mt.2015.45 pubmed: 25815697 pmcid: 4817749
Wang, J. M., Deng, X., Gong, W., & Su, S. (1998). Chemokines and their role in tumor growth and metastasis. Journal of Immunological Methods, 220(1–2), 1–17. https://doi.org/10.1016/s0022-1759(98)00128-8 .
doi: 10.1016/s0022-1759(98)00128-8 pubmed: 9839921
Wang, S., Li, G.-X., Tan, C.-C., He, R., Kang, L.-J., Lu, J.-T., et al. (2019). FOXF2 reprograms breast cancer cells into bone metastasis seeds. Nature Communications, 10(1), 2707. https://doi.org/10.1038/s41467-019-10379-7 .
doi: 10.1038/s41467-019-10379-7 pubmed: 31222004 pmcid: 6586905
Figenschau, S. L., Knutsen, E., Urbarova, I., Fenton, C., Elston, B., Perander, M., et al. (2018). ICAM1 expression is induced by proinflammatory cytokines and associated with TLS formation in aggressive breast cancer subtypes. Scientific Reports, 8(1), 11720. https://doi.org/10.1038/s41598-018-29604-2 .
doi: 10.1038/s41598-018-29604-2 pubmed: 30082828 pmcid: 6079003
Rosette, C., Roth, R. B., Oeth, P., Braun, A., Kammerer, S., Ekblom, J., & Denissenko, M. F. (2005). Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis, 26(5), 943–950. https://doi.org/10.1093/carcin/bgi070 .
doi: 10.1093/carcin/bgi070 pubmed: 15774488
Graves, D. T., Jiang, Y., & Valente, A. J. (1999). The expression of monocyte chemoattractant protein-1 and other chemokines by osteoblasts. Frontiers in Bioscience: a Journal and Virtual Library, 4, D571–D580. https://doi.org/10.2741/graves .
doi: 10.2741/graves
Khan, U. A., Hashimi, S. M., Bakr, M. M., Forwood, M. R., & Morrison, N. A. (2016). CCL2 and CCR2 are essential for the formation of osteoclasts and foreign body giant cells. Journal of Cellular Biochemistry, 117(2), 382–389. https://doi.org/10.1002/jcb.25282 .
doi: 10.1002/jcb.25282 pubmed: 26205994
Youngs, S. J., Ali, S. A., Taub, D. D., & Rees, R. C. (1997). Chemokines induce migrational responses in human breast carcinoma cell lines. International Journal of Cancer, 71(2), 257–266. https://doi.org/10.1002/(sici)1097-0215(19970410)71:2<257::aid-ijc22>3.0.co;2-d .
Terashima, Y., Onai, N., Murai, M., Enomoto, M., Poonpiriya, V., Hamada, T., et al. (2005). Pivotal function for cytoplasmic protein FROUNT in CCR2-mediated monocyte chemotaxis. Nature Immunology, 6(8), 827–835. https://doi.org/10.1038/ni1222 .
doi: 10.1038/ni1222 pubmed: 15995708
van Golen, K. L., Ying, C., Sequeira, L., Dubyk, C. W., Reisenberger, T., Chinnaiyan, A. M., et al. (2008). CCL2 induces prostate cancer transendothelial cell migration via activation of the small GTPase Rac. Journal of Cellular Biochemistry, 104(5), 1587–1597. https://doi.org/10.1002/jcb.21652 .
doi: 10.1002/jcb.21652 pubmed: 18646053
Ochoa, O., Sun, D., Reyes-Reyna, S. M., Waite, L. L., Michalek, J. E., McManus, L. M., & Shireman, P. K. (2007). Delayed angiogenesis and VEGF production in CCR2−/− mice during impaired skeletal muscle regeneration. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 293(2), R651–R661. https://doi.org/10.1152/ajpregu.00069.2007 .
doi: 10.1152/ajpregu.00069.2007 pubmed: 17522124
Mohan, S., & Baylink, D. J. (1991). Bone growth factors. Clinical Orthopaedics and Related Research, 263, 30–48.
Solheim, E. (1998). Growth factors in bone. International Orthopaedics, 22(6), 410–416. https://doi.org/10.1007/s002640050290 .
doi: 10.1007/s002640050290 pubmed: 10093814 pmcid: 3619673
Liang, Z., Wu, T., Lou, H., Yu, X., Taichman, R. S., Lau, S. K., et al. (2004). Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Research, 64(12), 4302–4308. https://doi.org/10.1158/0008-5472.CAN-03-3958 .
doi: 10.1158/0008-5472.CAN-03-3958 pubmed: 15205345
Liang, Z., Yoon, Y., Votaw, J., Goodman, M. M., Williams, L., & Shim, H. (2005). Silencing of CXCR4 blocks breast cancer metastasis. Cancer Research, 65(3), 967–971.
pubmed: 15705897 pmcid: 3734941
Sun, Y.-X., Schneider, A., Jung, Y., Wang, J., Dai, J., Wang, J., et al. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 20(2), 318–329. https://doi.org/10.1359/JBMR.041109 .
doi: 10.1359/JBMR.041109
Shahnazari, M., Chu, V., Wronski, T. J., Nissenson, R. A., & Halloran, B. P. (2013). CXCL12/CXCR4 signaling in the osteoblast regulates the mesenchymal stem cell and osteoclast lineage populations. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 27(9), 3505–3513. https://doi.org/10.1096/fj.12-225763 .
doi: 10.1096/fj.12-225763
Salcedo, R., & Oppenheim, J. J. (2003). Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation (New York, N.Y.: 1994), 10(3–4), 359–370. https://doi.org/10.1038/sj.mn.7800200 .
doi: 10.1038/sj.mn.7800200
Ma, J., Sun, X., Wang, Y., Chen, B., Qian, L., & Wang, Y. (2019). Fibroblast-derived CXCL12 regulates PTEN expression and is associated with the proliferation and invasion of colon cancer cells via PI3k/Akt signaling. Cell Communication and Signaling: CCS, 17. https://doi.org/10.1186/s12964-019-0432-5 .
Havens, A. M., Jung, Y., Sun, Y. X., Wang, J., Shah, R. B., Bühring, H. J., et al. (2006). The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis. BMC Cancer, 6, 195. https://doi.org/10.1186/1471-2407-6-195 .
doi: 10.1186/1471-2407-6-195 pubmed: 16859559 pmcid: 1557671
Dehghani, M., Kianpour, S., Zangeneh, A., & Mostafavi-Pour, Z. (2014). CXCL12 modulates prostate cancer cell adhesion by altering the levels or activities of β1-containing integrins. International Journal of Cell Biology. Research Article, Hindawi. https://doi.org/10.1155/2014/981750 .
Sehgal, G., Hua, J., Bernhard, E. J., Sehgal, I., Thompson, T. C., & Muschel, R. J. (1998). Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma. The American Journal of Pathology, 152(2), 591–596.
pubmed: 9466586 pmcid: 1857976
Zhang, X. H.-F., Wang, Q., Gerald, W., Hudis, C. A., Norton, L., Smid, M., et al. (2009). Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell, 16(1), 67–78. https://doi.org/10.1016/j.ccr.2009.05.017 .
doi: 10.1016/j.ccr.2009.05.017 pubmed: 19573813 pmcid: 2749247
Shiozawa, Y., Pedersen, E. A., Havens, A. M., Jung, Y., Mishra, A., Joseph, J., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121(4), 1298–1312. https://doi.org/10.1172/JCI43414 .
doi: 10.1172/JCI43414 pubmed: 21436587 pmcid: 3069764
Jung, Y., Wang, J., Lee, E., McGee, S., Berry, J. E., Yumoto, K., et al. (2015). Annexin 2–CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Molecular Cancer Research, 13(1), 197–207. https://doi.org/10.1158/1541-7786.MCR-14-0118 .
doi: 10.1158/1541-7786.MCR-14-0118 pubmed: 25139998
Chinni, S. R., Yamamoto, H., Dong, Z., Sabbota, A., Bonfil, R. D., & Cher, M. L. (2008). CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone. Molecular cancer research: MCR, 6(3), 446–457. https://doi.org/10.1158/1541-7786.MCR-07-0117 .
doi: 10.1158/1541-7786.MCR-07-0117 pubmed: 18337451
Conley-LaComb, M. K., Semaan, L., Singareddy, R., Li, Y., Heath, E. I., Kim, S., et al. (2016). Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Molecular Cancer, 15. https://doi.org/10.1186/s12943-016-0552-0 .
Ardura, J. A., Gutiérrez-Rojas, I., Álvarez-Carrión, L., Rodríguez-Ramos, M. R., Pozuelo, J. M., & Alonso, V. (2019). The secreted matrix protein mindin increases prostate tumor progression and tumor-bone crosstalk via ERK 1/2 regulation. Carcinogenesis, 40(7), 828–839. https://doi.org/10.1093/carcin/bgz105 .
doi: 10.1093/carcin/bgz105 pubmed: 31168562
Bellahcène, A., Bachelier, R., Detry, C., Lidereau, R., Clézardin, P., & Castronovo, V. (2007). Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Research and Treatment, 101(2), 135–148. https://doi.org/10.1007/s10549-006-9279-8 .
doi: 10.1007/s10549-006-9279-8 pubmed: 17028989
Knerr, K., Ackermann, K., Neidhart, T., & Pyerin, W. (2004). Bone metastasis: Osteoblasts affect growth and adhesion regulons in prostate tumor cells and provoke osteomimicry. International Journal of Cancer, 111(1), 152–159. https://doi.org/10.1002/ijc.20223 .
doi: 10.1002/ijc.20223 pubmed: 15185357
Lamoureux, F., Ory, B., Battaglia, S., Pilet, P., Heymann, M.-F., Gouin, F., et al. (2008). Relevance of a new rat model of osteoblastic metastases from prostate carcinoma for preclinical studies using zoledronic acid. International Journal of Cancer, 122(4), 751–760. https://doi.org/10.1002/ijc.23187 .
doi: 10.1002/ijc.23187 pubmed: 17960623
Kim, M. S., Day, C. J., & Morrison, N. A. (2005). MCP-1 is induced by receptor activator of nuclear factor-{kappa}B ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. The Journal of Biological Chemistry, 280(16), 16163–16169. https://doi.org/10.1074/jbc.M412713200 .
doi: 10.1074/jbc.M412713200 pubmed: 15722361
Ma, R.-Y., Zhang, H., Li, X.-F., Zhang, C.-B., Selli, C., Tagliavini, G., et al. (2020). Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. The Journal of Experimental Medicine, 217(11). https://doi.org/10.1084/jem.20191820 .
Siddiqui, J. A., & Partridge, N. C. (2017). CCL2/monocyte chemoattractant protein 1 and parathyroid hormone action on bone. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00049 .
Sul, O.-J., Ke, K., Kim, W.-K., Kim, S.-H., Lee, S.-C., Kim, H.-J., et al. (2012). Absence of MCP-1 leads to elevated bone mass via impaired actin ring formation. Journal of Cellular Physiology, 227(4), 1619–1627. https://doi.org/10.1002/jcp.22879 .
doi: 10.1002/jcp.22879 pubmed: 21678414
Chiechi, A., Waning, D. L., Stayrook, K. R., Buijs, J. T., Guise, T. A., & Mohammad, K. S. (2013). Role of TGF-β in breast cancer bone metastases. Advances in bioscience and biotechnology (Print), 4(10C), 15–30. https://doi.org/10.4236/abb.2013.410A4003 .
doi: 10.4236/abb.2013.410A4003
Guise, T. A., Yoneda, T., Yates, A. J., & Mundy, G. R. (1993). The combined effect of tumor-produced parathyroid hormone-related protein and transforming growth factor-alpha enhance hypercalcemia in vivo and bone resorption in vitro. The Journal of Clinical Endocrinology and Metabolism, 77(1), 40–45. https://doi.org/10.1210/jcem.77.1.8325957 .
doi: 10.1210/jcem.77.1.8325957 pubmed: 8325957
Qian, D. Z., Rademacher, B. L. S., Pittsenbarger, J., Huang, C.-Y., Myrthue, A., Higano, C. S., et al. (2010). CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel - induced cytotoxicity. The Prostate, 70(4), 433–442. https://doi.org/10.1002/pros.21077 .
doi: 10.1002/pros.21077 pubmed: 19866475 pmcid: 2931415
Liao, T. S., Yurgelun, M. B., Chang, S.-S., Zhang, H.-Z., Murakami, K., Blaine, T. A., et al. (2005). Recruitment of osteoclast precursors by stromal cell derived factor-1 (SDF-1) in giant cell tumor of bone. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 23(1), 203–209. https://doi.org/10.1016/j.orthres.2004.06.018 .
doi: 10.1016/j.orthres.2004.06.018
Zannettino, A. C. W., Farrugia, A. N., Kortesidis, A., Manavis, J., To, L. B., Martin, S. K., et al. (2005). Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Research, 65(5), 1700–1709. https://doi.org/10.1158/0008-5472.CAN-04-1687 .
doi: 10.1158/0008-5472.CAN-04-1687 pubmed: 15753365
Fridlender, Z. G., Kapoor, V., Buchlis, G., Cheng, G., Sun, J., Wang, L.-C. S., et al. (2011). Monocyte chemoattractant protein–1 blockade inhibits lung cancer tumor growth by altering macrophage phenotype and activating CD8+ cells. American Journal of Respiratory Cell and Molecular Biology, 44(2), 230–237. https://doi.org/10.1165/rcmb.2010-0080OC .
doi: 10.1165/rcmb.2010-0080OC pubmed: 20395632
Lu, Y., Chen, Q., Corey, E., Xie, W., Fan, J., Mizokami, A., & Zhang, J. (2009). Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clinical & Experimental Metastasis, 26(2), 161–169. https://doi.org/10.1007/s10585-008-9226-7 .
doi: 10.1007/s10585-008-9226-7
Roblek, M., Strutzmann, E., Zankl, C., Adage, T., Heikenwalder, M., Atlic, A., et al. (2016). Targeting of CCL2-CCR2-glycosaminoglycan axis using a CCL2 decoy protein attenuates metastasis through inhibition of tumor cell seeding. Neoplasia, 18(1), 49–59. https://doi.org/10.1016/j.neo.2015.11.013 .
doi: 10.1016/j.neo.2015.11.013 pubmed: 26806351 pmcid: 4735630
Bertolini, F., Dell’Agnola, C., Mancuso, P., Rabascio, C., Burlini, A., Monestiroli, S., et al. (2002). CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Research, 62(11), 3106–3112.
pubmed: 12036921
Brennecke, P., Arlt, M. J. E., Campanile, C., Husmann, K., Gvozdenovic, A., Apuzzo, T., et al. (2014). CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice. Clinical & Experimental Metastasis, 31(3), 339–349. https://doi.org/10.1007/s10585-013-9632-3 .
doi: 10.1007/s10585-013-9632-3
Gelmini, S., Mangoni, M., Castiglione, F., Beltrami, C., Pieralli, A., Andersson, K. L., et al. (2009). The CXCR4/CXCL12 axis in endometrial cancer. Clinical & Experimental Metastasis, 26(3), 261–268. https://doi.org/10.1007/s10585-009-9240-4 .
doi: 10.1007/s10585-009-9240-4
Miura, K., Uniyal, S., Leabu, M., Oravecz, T., Chakrabarti, S., Morris, V. L., & Chan, B. M. C. (2005). Chemokine receptor CXCR4-beta1 integrin axis mediates tumorigenesis of osteosarcoma HOS cells. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire, 83(1), 36–48. https://doi.org/10.1139/o04-106 .
doi: 10.1139/o04-106 pubmed: 15746965
Murakami, T., Maki, W., Cardones, A. R., Fang, H., Tun Kyi, A., Nestle, F. O., & Hwang, S. T. (2002). Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Research, 62(24), 7328–7334.
pubmed: 12499276
Tavor, S., Petit, I., Porozov, S., Avigdor, A., Dar, A., Leider-Trejo, L., et al. (2004). CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Research, 64(8), 2817–2824. https://doi.org/10.1158/0008-5472.can-03-3693 .
doi: 10.1158/0008-5472.can-03-3693 pubmed: 15087398
Zeelenberg, I. S., Ruuls-Van Stalle, L., & Roos, E. (2003). The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Research, 63(13), 3833–3839.
pubmed: 12839981
Chen, Y., Stamatoyannopoulos, G., & Song, C.-Z. (2003). Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Research, 63(16), 4801–4804.
pubmed: 12941798
Brana, I., Calles, A., LoRusso, P. M., Yee, L. K., Puchalski, T. A., Seetharam, S., et al. (2015). Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Targeted Oncology, 10(1), 111–123. https://doi.org/10.1007/s11523-014-0320-2 .
doi: 10.1007/s11523-014-0320-2 pubmed: 24928772
Kuhne, M. R., Mulvey, T., Belanger, B., Chen, S., Pan, C., Chong, C., et al. (2013). BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19(2), 357–366. https://doi.org/10.1158/1078-0432.CCR-12-2333 .
doi: 10.1158/1078-0432.CCR-12-2333
Pienta, K. J., Machiels, J.-P., Schrijvers, D., Alekseev, B., Shkolnik, M., Crabb, S. J., et al. (2013). Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Investigational New Drugs, 31(3), 760–768. https://doi.org/10.1007/s10637-012-9869-8 .
doi: 10.1007/s10637-012-9869-8 pubmed: 22907596
Sandhu, S. K., Papadopoulos, K., Fong, P. C., Patnaik, A., Messiou, C., Olmos, D., et al. (2013). A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemotherapy and Pharmacology, 71(4), 1041–1050. https://doi.org/10.1007/s00280-013-2099-8 .
doi: 10.1007/s00280-013-2099-8 pubmed: 23385782
Vergunst, C. E., Gerlag, D. M., Lopatinskaya, L., Klareskog, L., Smith, M. D., van den Bosch, F., et al. (2008). Modulation of CCR2 in rheumatoid arthritis: A double-blind, randomized, placebo-controlled clinical trial. Arthritis and Rheumatism, 58(7), 1931–1939. https://doi.org/10.1002/art.23591 .
doi: 10.1002/art.23591 pubmed: 18576354
Pernas, S., Martin, M., Kaufman, P. A., Gil-Martin, M., Gomez Pardo, P., Lopez-Tarruella, S., et al. (2018). Balixafortide plus eribulin in HER2-negative metastatic breast cancer: A phase 1, single-arm, dose-escalation trial. The Lancet. Oncology, 19(6), 812–824. https://doi.org/10.1016/S1470-2045(18)30147-5 .
doi: 10.1016/S1470-2045(18)30147-5 pubmed: 29706375
Rajagopal, S., Bassoni, D. L., Campbell, J. J., Gerard, N. P., Gerard, C., & Wehrman, T. S. (2013). Biased agonism as a mechanism for differential signaling by chemokine receptors *. Journal of Biological Chemistry, 288(49), 35039–35048. https://doi.org/10.1074/jbc.M113.479113 .
doi: 10.1074/jbc.M113.479113
Salanga, C. L., O’Hayre, M., & Handel, T. (2009). Modulation of chemokine receptor activity through dimerization and crosstalk. Cellular and Molecular Life Sciences: CMLS, 66(8), 1370–1386. https://doi.org/10.1007/s00018-008-8666-1 .
doi: 10.1007/s00018-008-8666-1 pubmed: 19099182
Schall, T. J., & Proudfoot, A. E. I. (2011). Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nature Reviews Immunology, 11(5), 355–363. https://doi.org/10.1038/nri2972 .
doi: 10.1038/nri2972 pubmed: 21494268
Stephens, B., & Handel, T. M. (2013). Chemokine receptor oligomerization and allostery. Progress in Molecular Biology and Translational Science, 115, 375–420. https://doi.org/10.1016/B978-0-12-394587-7.00009-9 .
doi: 10.1016/B978-0-12-394587-7.00009-9 pubmed: 23415099 pmcid: 4072031
Bégin-Lavallée, V., Midavaine, É., Dansereau, M.-A., Tétreault, P., Longpré, J.-M., Jacobi, A. M., et al. (2016). Functional inhibition of chemokine receptor CCR2 by dicer-substrate-siRNA prevents pain development. Molecular Pain, 12. https://doi.org/10.1177/1744806916653969 .
Collingwood, M. A., Rose, S. D., Hsuang, L., Hillier, C., Amarzguioui, M., Wiiger, M. T., et al. (2008). Chemical modification patterns compatible with high potency dicer-substrate small interfering RNAs. Oligonucleotides, 18(2), 187–199. https://doi.org/10.1089/oli.2008.0123 .
doi: 10.1089/oli.2008.0123 pubmed: 18637735 pmcid: 2582043
Brouillette, R. L., Besserer-Offroy, É., Mona, C. E., Chartier, M., Lavenus, S., Sousbie, M., et al. (2020). Cell-penetrating pepducins targeting the neurotensin receptor type 1 relieve pain. Pharmacological Research, 155, 104750. https://doi.org/10.1016/j.phrs.2020.104750 .
doi: 10.1016/j.phrs.2020.104750 pubmed: 32151680
Zhang, P., Covic, L., & Kuliopulos, A. (2015). Pepducins and other lipidated peptides as mechanistic probes and therapeutics. Methods in Molecular Biology (Clifton, N.J.), 1324, 191–203. https://doi.org/10.1007/978-1-4939-2806-4_13 .
doi: 10.1007/978-1-4939-2806-4_13

Auteurs

Élora Midavaine (É)

Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada. elora.midavaine@usherbrooke.ca.
Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada. elora.midavaine@usherbrooke.ca.

Jérôme Côté (J)

Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.
Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.

Philippe Sarret (P)

Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada.
Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH