Natural disaster stress during pregnancy is linked to reprogramming of the placenta transcriptome in relation to anxiety and stress hormones in young offspring.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
22
10
2020
accepted:
13
04
2021
revised:
29
03
2021
pubmed:
14
5
2021
medline:
15
3
2022
entrez:
13
5
2021
Statut:
ppublish
Résumé
Prenatal stress can lead to long-term adverse effects that increase the risk of anxiety and other emotional disorders in offspring. The in utero underpinnings contributing to such phenotypes remain unknown. We profiled the transcriptome of placental specimens from women who lived through Hurricane Sandy during pregnancy compared to those pregnant during non-Sandy conditions. Following birth, longitudinal assessments were conducted in their offspring during childhood (~3-4 years old) to measure steroid hormones (in hair) and behavioral and emotional problems. This revealed a significant link between prenatal Sandy stress (PNSS) and child HPA dysfunction, evident by altered cortisol, dehydroepiandrosterone (DHEA), and cortisol:DHEA levels. In addition, PNSS was associated with significantly increased anxiety and aggression. These findings coincided with significant reorganization of the placental transcriptome via vascular, immune, and endocrine gene pathways. Interestingly, many of the most prominently altered genes were known to be uniquely expressed in syncytiotrophoblast (STB)-subtype of placental cells and harbored glucocorticoid response elements in promoter regions. Finally, several vascular development- and immune-related placental gene sets were found to mediate the relationship between PNSS and childhood phenotypes. Overall, these findings suggest that natural disaster-related stress during pregnancy reprograms the placental molecular signature, potentially driving long-lasting changes in stress regulation and emotional health. Further examination of placental mechanisms may elucidate the environment's contribution to subsequent risk for anxiety disorders later in life.
Identifiants
pubmed: 33981007
doi: 10.1038/s41380-021-01123-z
pii: 10.1038/s41380-021-01123-z
pmc: PMC8586067
mid: NIHMS1730709
doi:
Substances chimiques
Hydrocortisone
WI4X0X7BPJ
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
6520-6530Subventions
Organisme : NIDA NIH HHS
ID : R01 DA023214
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES029212
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA030359
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH102729
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Graignic-Philippe R, Dayan J, Chokron S, Jacquet AY, Tordjman S. Effects of prenatal stress on fetal and child development: a critical literature review. Neurosci Biobehav Rev. 2014;43:137–62.
pubmed: 24747487
doi: 10.1016/j.neubiorev.2014.03.022
Li H, Bowen A, Bowen R, Balbuena L, Feng C, Bally J, et al. Mood instability during pregnancy and postpartum: a systematic review. Arch Women’s Ment Health. 2020;23:29–41.
doi: 10.1007/s00737-019-00956-6
Dunkel Schetter C. Psychological science on pregnancy: stress processes, biopsychosocial models, and emerging research issues. Annu Rev Psychol. 2011;62:531–58.
pubmed: 21126184
doi: 10.1146/annurev.psych.031809.130727
Kim DR, Bale TL, Epperson CN. Prenatal programming of mental illness: current understanding of relationship and mechanisms. Curr Psychiatry Rep. 2015;17:5.
pubmed: 25617041
pmcid: 4458064
doi: 10.1007/s11920-014-0546-9
Van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci Biobehav Rev. 2017;117:26–64.
pubmed: 28757456
doi: 10.1016/j.neubiorev.2017.07.003
Coussons-Read ME. Effects of prenatal stress on pregnancy and human development: mechanisms and pathways. Obstet Med. 2013;6:52–7.
pubmed: 27757157
pmcid: 5052760
doi: 10.1177/1753495x12473751
McLean MA, Cobham VE, Simcock G, Elgbeili G, Kildea S, King S. The role of prenatal maternal stress in the development of childhood anxiety symptomatology: the QF2011 Queensland Flood Study. Dev Psychopathol. 2018;30:995–1007.
pubmed: 30068409
doi: 10.1017/S0954579418000408
Yong Ping E, Laplante DP, Elgbeili G, Jones SL, Brunet A, King S. Disaster-related prenatal maternal stress predicts HPA reactivity and psychopathology in adolescent offspring: project Ice Storm. Psychoneuroendocrinology. 2020;117:104697.
pubmed: 32442863
doi: 10.1016/j.psyneuen.2020.104697
Nomura Y, Davey K, Pehme PM, Finik J, Glover V, Zhang W, et al. Influence of in utero exposure to maternal depression and natural disaster-related stress on infant temperament at 6 months: The children of Superstorm Sandy. Infant Ment Health J. 2019;40:204–16.
pubmed: 30723931
pmcid: 6491203
Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res. 2019;86:157–64.
pubmed: 31003234
doi: 10.1038/s41390-019-0405-9
Bronson SL, Bale TL. The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology. 2016;41:207–18.
pubmed: 26250599
doi: 10.1038/npp.2015.231
St-Pierre J, Laplante DP, Elgbeili G, Dawson PA, Kildea S, King S, et al. Natural disaster-related prenatal maternal stress is associated with alterations in placental glucocorticoid system: the QF2011 Queensland Flood Study. Psychoneuroendocrinology. 2018;94:38–48.
pubmed: 29754004
doi: 10.1016/j.psyneuen.2018.04.027
Zhang W, Li Q, Deyssenroth M, Lambertini L, Finik J, Ham J, et al. Timing of prenatal exposure to trauma and altered placental expressions of hypothalamic-pituitary-adrenal axis genes and genes driving neurodevelopment. J Neuroendocrinol. 2018;30:e12581.
pubmed: 29423924
pmcid: 5939590
doi: 10.1111/jne.12581
Zhang W, Ham J, Li Q, Deyssenroth MA, Lambertini L, Huang Y, et al. Moderate prenatal stress may buffer the impact of Superstorm Sandy on placental genes: stress in pregnancy (SIP) study. PLoS ONE. 2020;15:e0226605.
pubmed: 31995614
pmcid: 6988921
doi: 10.1371/journal.pone.0226605
Finik J, Nomura Y. Cohort profile: stress in pregnancy (SIP) study. Int J Epidemiol. 2017;46:1388–k.
pubmed: 28089961
pmcid: 5837345
Manenschijn L, Koper JW, Lamberts SW, van Rossum EF. Evaluation of a method to measure long term cortisol levels. Steroids. 2011;76:1032–6.
pubmed: 21515299
doi: 10.1016/j.steroids.2011.04.005
Sauve B, Koren G, Walsh G, Tokmakejian S, Van Uum SH. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med. 2007;30:E183–91.
pubmed: 17892760
doi: 10.25011/cim.v30i5.2894
Stalder T, Kirschbaum C. Analysis of cortisol in hair–state of the art and future directions. Brain Behav Immun. 2012;26:1019–29.
pubmed: 22366690
doi: 10.1016/j.bbi.2012.02.002
Reynolds CR, Kamphaus RW. BASC-2: Behavior Assessment System for Children. 2nd ed. Circle Pines, MN: American Guidance Service; 2004.
Bradstreet LE, Juechter JI, Kamphaus RW, Kerns CM, Robins DL. Using the BASC-2 parent rating scales to screen for autism spectrum disorder in toddlers and preschool-aged children. J Abnorm Child Psychol. 2017;45:359–70.
pubmed: 27177744
pmcid: 5108689
doi: 10.1007/s10802-016-0167-3
Norris F, Kaniasty K, Scheer D. Use of mental health services among victims of crime: frequency, correlates, and subsequent recovery. J Consulting Clin Psychol. 1990;58:538–47.
doi: 10.1037/0022-006X.58.5.538
Spielberger CD. State-trait anxiety inventory: bibliography. 2nd ed. Palo Alto, CA: Consulting Psychologists Press; 1989.
Murray DCJ. Screening for depression during pregnancy with the Edinburgh Depression Scale (EPDS). J Reprod Infant Psychol. 1990;8:99–107.
doi: 10.1080/02646839008403615
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
pubmed: 23104886
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
pubmed: 25516281
pmcid: 4302049
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.
pubmed: 27141961
pmcid: 4987924
doi: 10.1093/nar/gkw377
Pique-Regi R, Romero R, Tarca AL, Sendler ED, Xu Y, Garcia-Flores V, et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. Elife. 2019;8:e52004.
pubmed: 31829938
pmcid: 6949028
doi: 10.7554/eLife.52004
Togher KL, Togher KL, O’Keeffe MM, O’Keeffe MM, Khashan AS, Khashan AS, et al. Epigenetic regulation of the placental HSD11B2 barrier and its role as a critical regulator of fetal development. Epigenetics. 2014;9:816–22.
pubmed: 24717516
pmcid: 4065178
doi: 10.4161/epi.28703
Zhu Q, Pan P, Chen X, Wang Y, Zhang S, Mo J, et al. Human placental 3beta-hydroxysteroid dehydrogenase/steroid Delta5,4-isomerase 1: identity, regulation and environmental inhibitors. Toxicology. 2019;425:152253.
pubmed: 31351905
doi: 10.1016/j.tox.2019.152253
Liao S, Vickers MH, Stanley JL, Baker PN, Perry JK. Human placental growth hormone variant in pathological pregnancies. Endocrinology. 2018;159:2186–98.
pubmed: 29659791
doi: 10.1210/en.2018-00037
Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the normal human placenta. Thromb Res. 2004;114:397–407.
pubmed: 15507270
doi: 10.1016/j.thromres.2004.06.038
Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA. 2013;110:12048–53.
pubmed: 23818581
pmcid: 3718097
doi: 10.1073/pnas.1304718110
Robbins JR, Skrzypczynska KM, Zeldovich VB, Kapidzic M, Bakardjiev AI. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PLoS Pathog. 2010;6:e1000732.
pubmed: 20107601
pmcid: 2809766
doi: 10.1371/journal.ppat.1000732
Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019;4:eaat6114.
pubmed: 30635356
pmcid: 6744611
doi: 10.1126/sciimmunol.aat6114
Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61:1296–302.
pubmed: 18755720
doi: 10.1136/jcp.2008.055277
Capron LE, Ramchandani PG, Glover V. Maternal prenatal stress and placental gene expression of NR3C1 and HSD11B2: The effects of maternal ethnicity. Psychoneuroendocrinology. 2018;87:166–72.
pubmed: 29100173
doi: 10.1016/j.psyneuen.2017.10.019
Hompes T, Izzi B, Gellens E, Morreels M, Fieuws S, Pexsters A, et al. Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res. 2013;47:880–91.
pubmed: 23566423
doi: 10.1016/j.jpsychires.2013.03.009
Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3:97–106.
pubmed: 18536531
doi: 10.4161/epi.3.2.6034
Kamin HS, Kertes DA. Cortisol and DHEA in development and psychopathology. Horm Behav. 2017;89:69–85.
pubmed: 27979632
doi: 10.1016/j.yhbeh.2016.11.018
Grillon C, Pine DS, Baas JM, Lawley M, Ellis V, Charney DS. Cortisol and DHEA-S are associated with startle potentiation during aversive conditioning in humans. Psychopharmacology. 2006;186:434–41.
pubmed: 16052364
doi: 10.1007/s00213-005-0124-2
Fava M, Rosenbaum JF, MacLaughlin RA, Tesar GE, Pollack MH, Cohen LS, et al. Dehydroepiandrosterone-sulfate/cortisol ratio in panic disorder. Psychiatry Res. 1989;28:345–50.
pubmed: 2527376
doi: 10.1016/0165-1781(89)90215-1
Seckl JR, Meaney MJ. Glucocorticoid programming. Ann NY Acad Sci. 2004;1032:63–84.
pubmed: 15677396
doi: 10.1196/annals.1314.006
Weinstock M. The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav Immun. 2005;19:296–308.
pubmed: 15944068
doi: 10.1016/j.bbi.2004.09.006
Thayer ZM, Wilson MA, Kim AW, Jaeggi AV. Impact of prenatal stress on offspring glucocorticoid levels: a phylogenetic meta-analysis across 14 vertebrate species. Sci Rep. 2018;8:4942.
pubmed: 29563562
pmcid: 5862967
doi: 10.1038/s41598-018-23169-w
Send TS, Bardtke S, Gilles M, Wolf IAC, Sutterlin MW, Wudy SA, et al. Prenatal maternal stress is associated with lower cortisol and cortisone levels in the first morning urine of 45-month-old children. Psychoneuroendocrinology. 2019;103:219–24.
pubmed: 30711899
doi: 10.1016/j.psyneuen.2019.01.017
Redman CW, Staff AC. Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. Am J Obstet Gynecol. 2015;213:S9 e1.
doi: 10.1016/j.ajog.2015.08.003
Han C, Han L, Huang P, Chen Y, Wang Y, Xue F. Syncytiotrophoblast-derived extracellular vesicles in pathophysiology of preeclampsia. Front Physiol. 2019;10:1236.
pubmed: 31632289
pmcid: 6779799
doi: 10.3389/fphys.2019.01236
Ishihara N, Matsuo H, Murakoshi H, Laoag-Fernandez JB, Samoto T, Maruo T. Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol. 2002;186:158–66.
pubmed: 11810103
doi: 10.1067/mob.2002.119176
O’Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O’Connor TG, Glover V. Maternal prenatal anxiety and downregulation of placental 11beta-HSD2. Psychoneuroendocrinology. 2012;37:818–26.
pubmed: 22001010
doi: 10.1016/j.psyneuen.2011.09.014
Seth S, Lewis AJ, Saffery R, Lappas M, Galbally M. Maternal prenatal mental health and placental 11beta-HSD2 gene expression: initial findings from the mercy pregnancy and emotional wellbeing study. Int J Mol Sci. 2015;16:27482–96.
pubmed: 26593902
pmcid: 4661892
doi: 10.3390/ijms161126034
Hobel CJ, Dunkel-Schetter C, Roesch SC, Castro LC, Arora CP. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. Am J Obstet Gynecol. 1999;180:S257–63.
pubmed: 9914629
doi: 10.1016/S0002-9378(99)70712-X
Sandman CA. Prenatal CRH: an integrating signal of fetal distress. Dev Psychopathol. 2018;30:941–52.
pubmed: 30068427
doi: 10.1017/S0954579418000664
Robinson BG, Emanuel RL, Frim DM, Majzoub JA. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta. Proc Natl Acad Sci USA. 1988;85:5244–8.
pubmed: 2839838
pmcid: 281726
doi: 10.1073/pnas.85.14.5244
Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ. The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics. 2013;8:1321–9.
pubmed: 24135662
pmcid: 3933492
doi: 10.4161/epi.26634
Jensen Pena C, Monk C, Champagne FA. Epigenetic effects of prenatal stress on 11beta-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS ONE. 2012;7:e39791.
pubmed: 22761903
pmcid: 3383683
doi: 10.1371/journal.pone.0039791
Nugent BM, O’Donnell CM, Epperson CN, Bale TL. Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun. 2018;9:2555.
pubmed: 29967448
pmcid: 6028627
doi: 10.1038/s41467-018-04992-1
Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics. 2015;10:408–17.
pubmed: 25875334
pmcid: 4622733
doi: 10.1080/15592294.2015.1039221
Mulligan CJ, D’Errico NC, Stees J, Hughes DA. Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics. 2012;7:853–7.
pubmed: 22810058
pmcid: 3427280
doi: 10.4161/epi.21180
Spann MN, Monk C, Scheinost D, Peterson BS. Maternal immune activation during the third trimester is associated with neonatal functional connectivity of the salience network and fetal to toddler behavior. J Neurosci. 2018;38:2877–86.
pubmed: 29487127
pmcid: 5852665
doi: 10.1523/JNEUROSCI.2272-17.2018
Hsiao EY, Patterson PH. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun. 2011;25:604–15.
pubmed: 21195166
doi: 10.1016/j.bbi.2010.12.017
Bronson SL, Bale TL. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014;155:2635–46.
pubmed: 24797632
pmcid: 4060181
doi: 10.1210/en.2014-1040
Alaiti MA, Orasanu G, Tugal D, Lu Y, Jain MK. Kruppel-like factors and vascular inflammation: implications for atherosclerosis. Curr Atheroscler Rep. 2012;14:438–49.
pubmed: 22850980
pmcid: 4410857
doi: 10.1007/s11883-012-0268-6
Jakubowski M, Szahidewicz-Krupska E, Doroszko A. The human carbonic anhydrase II in platelets: an underestimated field of its activity. Biomed Res Int. 2018;2018:4548353.
pubmed: 30050931
pmcid: 6046183
doi: 10.1155/2018/4548353
Sutherland S, Brunwasser SM. Sex differences in vulnerability to prenatal stress: a review of the recent literature. Curr Psychiatry Rep. 2018;20:102.
pubmed: 30229468
pmcid: 6329286
doi: 10.1007/s11920-018-0961-4