Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
06 2021
Historique:
received: 10 09 2020
accepted: 01 03 2021
pubmed: 16 5 2021
medline: 22 7 2021
entrez: 15 5 2021
Statut: ppublish

Résumé

Rigorous investigation of synaptic transmission requires analysis of unitary synaptic events by simultaneous recording from presynaptic terminals and postsynaptic target neurons. However, this has been achieved at only a limited number of model synapses, including the squid giant synapse and the mammalian calyx of Held. Cortical presynaptic terminals have been largely inaccessible to direct presynaptic recording, due to their small size. Here, we describe a protocol for improved subcellular patch-clamp recording in rat and mouse brain slices, with the synapse in a largely intact environment. Slice preparation takes ~2 h, recording ~3 h and post hoc morphological analysis 2 d. Single presynaptic hippocampal mossy fiber terminals are stimulated minimally invasively in the bouton-attached configuration, in which the cytoplasmic content remains unperturbed, or in the whole-bouton configuration, in which the cytoplasmic composition can be precisely controlled. Paired pre-postsynaptic recordings can be integrated with biocytin labeling and morphological analysis, allowing correlative investigation of synapse structure and function. Paired recordings can be obtained from mossy fiber terminals in slices from both rats and mice, implying applicability to genetically modified synapses. Paired recordings can also be performed together with axon tract stimulation or optogenetic activation, allowing comparison of unitary and compound synaptic events in the same target cell. Finally, paired recordings can be combined with spontaneous event analysis, permitting collection of miniature events generated at a single identified synapse. In conclusion, the subcellular patch-clamp techniques detailed here should facilitate analysis of biophysics, plasticity and circuit function of cortical synapses in the mammalian central nervous system.

Identifiants

pubmed: 33990799
doi: 10.1038/s41596-021-00526-0
pii: 10.1038/s41596-021-00526-0
doi:

Types de publication

Evaluation Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2947-2967

Subventions

Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 692692
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : Z 312-B27, Wittgenstein award
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : V 739-B27

Références

Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci. 11, 1496–1507 (1991).
pubmed: 1675264 pmcid: 6575403 doi: 10.1523/JNEUROSCI.11-06-01496.1991
Llinás, R. R. The Squid Giant Synapse: A Model for Chemical Transmission (Oxford University Press, 1999).
Forsythe, I. D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. 479, 381–387 (1994).
pubmed: 7837096 pmcid: 1155757 doi: 10.1113/jphysiol.1994.sp020303
von Gersdorff, H. & Borst, J. G. G. Short-term plasticity at the calyx of Held. Nat. Rev. Neurosci. 3, 53–64 (2002).
doi: 10.1038/nrn705
Neher, E. Some subtle lessons from the calyx of Held synapse. Biophys. J. 112, 215–223 (2017).
pubmed: 28122210 pmcid: 5266140 doi: 10.1016/j.bpj.2016.12.017
Borst, J. G. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).
pubmed: 8837774 doi: 10.1038/383431a0
Vyleta, N. P. & Jonas, P. Loose coupling between Ca
pubmed: 24503854 doi: 10.1126/science.1244811
Lindau, M. & Neher, E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflügers Arch. 411, 137–146 (1988).
pubmed: 3357753 doi: 10.1007/BF00582306
von Gersdorff, H. & Mathews, G. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735–739 (1994).
doi: 10.1038/367735a0
Hallermann, S., Pawlu, C., Jonas, P. & Heckmann, M. A large pool of releasable vesicles in a cortical glutamatergic synapse. Proc. Natl. Acad. Sci. USA 100, 8975–8980 (2003).
pubmed: 12815098 doi: 10.1073/pnas.1432836100
Delvendahl, I., Vyleta, N. P., von Gersdorff, H. & Hallermann, S. Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses. Neuron 90, 492–498 (2016).
pubmed: 27146271 pmcid: 5125781 doi: 10.1016/j.neuron.2016.03.013
Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 6, 863–876 (2005).
pubmed: 16261180 doi: 10.1038/nrn1786
Espinoza, C., Guzman, S. J., Zhang, X. & Jonas, P. Parvalbumin
pubmed: 30389916 pmcid: 6214995 doi: 10.1038/s41467-018-06899-3
Akaike, N., et al. Focal stimulation of single GABAergic presynaptic boutons on the rat hippocampal neuron. Neurosci. Res. 42, 187–195 (2002).
pubmed: 11900828 doi: 10.1016/S0168-0102(01)00320-0
Vyleta, N. P., Borges-Merjane, C. & Jonas, P. Plasticity-dependent, full detonation at hippocampal mossy fiber-CA3 pyramidal neuron synapses. eLife 5, e17977 (2016).
pubmed: 27780032 pmcid: 5079747 doi: 10.7554/eLife.17977
Vandael, D., Borges-Merjane, C., Zhang, X. & Jonas, P. Short-term plasticity at hippocampal mossy fiber synapses is induced by natural activity patterns and associated with vesicle pool engram formation. Neuron 107, 509–521.e7 (2020).
pubmed: 32492366 pmcid: 7427323 doi: 10.1016/j.neuron.2020.05.013
Chicurel, M. E. & Harris, K. M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).
pubmed: 1460112 doi: 10.1002/cne.903250204
Rollenhagen, A. et al. Structural determinants of transmission at large hippocampal mossy fiber synapses. J. Neurosci. 27, 10434–10444 (2007).
pubmed: 17898215 pmcid: 6673150 doi: 10.1523/JNEUROSCI.1946-07.2007
Borges-Merjane, C., Kim, O. & Jonas, P. Functional electron microscopy, ‘flash and freeze,’ of identified cortical synapses in acute brain slices. Neuron 105, 992–1006 (2020).
pubmed: 31928842 pmcid: 7083231 doi: 10.1016/j.neuron.2019.12.022
Rancz, E. A. et al. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450, 1245–1248 (2007).
pubmed: 18097412 pmcid: 5881887 doi: 10.1038/nature05995
Ritzau-Jost, A. et al. Ultrafast action potentials mediate kilohertz signaling at a central synapse. Neuron 84, 152–163 (2014).
pubmed: 25220814 doi: 10.1016/j.neuron.2014.08.036
Vivekananda, U. et al. Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization. Proc. Natl. Acad. Sci. USA 114, 2395–2400 (2017).
pubmed: 28193892 doi: 10.1073/pnas.1608763114
Kawaguchi, S. Y. & Sakaba, T. Fast Ca
pubmed: 29262314 doi: 10.1016/j.celrep.2017.11.072
Ritzau-Jost, A. et al. Large, stable spikes exhibit differential broadening in excitatory and inhibitory neocortical boutons. Cell Rep. 34, 108612 (2021).
pubmed: 33440142 pmcid: 7809622 doi: 10.1016/j.celrep.2020.108612
Geiger, J. R. P. & Jonas, P. Dynamic control of presynaptic Ca
pubmed: 11163277 doi: 10.1016/S0896-6273(00)00164-1
Bischofberger, J., et al. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1, 2075–2081 (2006).
pubmed: 17487197 doi: 10.1038/nprot.2006.312
Perkins, K. L. Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. J. Neurosci. Methods 154, 1–18 (2006).
pubmed: 16554092 pmcid: 2373773 doi: 10.1016/j.jneumeth.2006.02.010
Alcami, P., Franconville, R., Llano, I. & Marty, A. Measuring the firing rate of high-resistance neurons with cell-attached recording. J. Neurosci. 32, 3118–3130 (2012).
pubmed: 22378885 pmcid: 6622012 doi: 10.1523/JNEUROSCI.5371-11.2012
Engel, D. & Jonas, P. Presynaptic action potential amplification by voltage-gated Na
pubmed: 15694327 doi: 10.1016/j.neuron.2004.12.048
Dodt, H. U. & Zieglgänsberger, W. Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci. 17, 453–458 (1994).
pubmed: 7531885 doi: 10.1016/0166-2236(94)90130-9
Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. 472, 615–663 (1993).
pubmed: 7908327 pmcid: 1160505 doi: 10.1113/jphysiol.1993.sp019965
Lawrence, J. J., Grinspan, Z. M. & McBain, C. J. Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. J. Physiol. 554, 175–193 (2004).
pubmed: 14678500 doi: 10.1113/jphysiol.2003.049551
Kamiya, H., Shinozaki, H. & Yamamoto, C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J. Physiol. 493, 447–455 (1996).
pubmed: 8782108 pmcid: 1158929 doi: 10.1113/jphysiol.1996.sp021395
Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522 (1997).
pubmed: 9295396 pmcid: 6573434 doi: 10.1523/JNEUROSCI.17-19-07503.1997
Weisskopf, M. G. & Nicoll, R. A. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Nature 376, 256–259 (1995).
pubmed: 7617037 doi: 10.1038/376256a0
Ben-Simon, Y. et al. A combined optogenetic-knockdown strategy reveals a major role of tomosyn in mossy fiber synaptic plasticity. Cell Rep. 12, 396–404 (2015).
pubmed: 26166572 pmcid: 4525481 doi: 10.1016/j.celrep.2015.06.037
Mori, M., Abegg, M. H., Gähwiler, B. H. & Gerber, U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431, 453–456 (2004).
pubmed: 15386013 doi: 10.1038/nature02854
Bischofberger, J., Geiger, J. R. P. & Jonas, P. Timing and efficacy of Ca
pubmed: 12486151 pmcid: 6758411 doi: 10.1523/JNEUROSCI.22-24-10593.2002
Martinello, K., et al. The subthreshold-active K
pubmed: 31044170 pmcid: 6486593 doi: 10.1038/s42003-019-0408-4
Alle, H. & Geiger, J. R. P. Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293 (2006).
pubmed: 16513983 doi: 10.1126/science.1119055
Szabadics, J. & Soltesz, I. Functional specificity of mossy fiber innervation of GABAergic cells in the hippocampus. J. Neurosci. 29, 4239–4251 (2009).
pubmed: 19339618 pmcid: 6665380 doi: 10.1523/JNEUROSCI.5390-08.2009
Amaral, D. G. & Dent, J. A. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51–86 (1981).
pubmed: 7204652 doi: 10.1002/cne.901950106
Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984–2992 (2011).
pubmed: 21765212 pmcid: 3223924 doi: 10.1172/JCI58050
Geiger, J. R. P. et al. Patch-clamp recording in brain slices with improved slicer technology. Pflügers Arch. 443, 491–501 (2002).
pubmed: 11810221 doi: 10.1007/s00424-001-0735-3
Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch. 414, 600–612 (1989).
pubmed: 2780225 doi: 10.1007/BF00580998
Guzman, S. J., Schlögl, A. & Schmidt-Hieber, C. Stimfit: quantifying electrophysiological data with Python. Front. Neuroinform. 8, 16 (2014).
pubmed: 24600389 pmcid: 3931263 doi: 10.3389/fninf.2014.00016
Williams, S. R. & Mitchell, S. J. Direct measurement of somatic voltage clamp errors in central neurons. Nat. Neurosci. 11, 790–798 (2008).
pubmed: 18552844 doi: 10.1038/nn.2137
del Castillo, J. & Katz, B. Changes in end-plate activity produced by presynaptic polarization. J. Physiol. 124, 586–604 (1954).
pmcid: 1366294 doi: 10.1113/jphysiol.1954.sp005131
Li, L., Bischofberger, J. & Jonas, P. Differential gating and recruitment of P/Q-, N-, and R-type Ca
pubmed: 18057200 pmcid: 6673086 doi: 10.1523/JNEUROSCI.1709-07.2007
Pernía-Andrade, A. J. et al. A deconvolution-based method with high sensitivity and temporal resolution for detection of spontaneous synaptic currents in vitro and in vivo. Biophys. J. 103, 1429–1439 (2012).
pubmed: 23062335 pmcid: 3471482 doi: 10.1016/j.bpj.2012.08.039
Zhang, X., Schlögl, A., Vandael, D. & Jonas, P. MOD: a novel machine-learning optimal-filtering method for accurate and efficient detection of subthreshold synaptic events in vivo. J. Neurosci. Methods https://doi.org/10.1016/j.jneumeth.2021.109125 (2021).
Miyano, R., Miki, T. & Sakaba, T. Ca-dependence of synaptic vesicle exocytosis and endocytosis at the hippocampal mossy fibre terminal. J. Physiol. 597, 4373–4386 (2019).
pubmed: 31294821 doi: 10.1113/JP278040
Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).
pubmed: 10972290 doi: 10.1038/35022702
Bollmann, J. H., Sakmann, B. & Borst, J. G. G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).
pubmed: 10937999 doi: 10.1126/science.289.5481.953
Midorikawa, M. & Sakaba, T. Kinetics of releasable synaptic vesicles and their plastic changes at hippocampal mossy fiber synapses. Neuron 96, 1033–1040 (2017).
pubmed: 29103807 doi: 10.1016/j.neuron.2017.10.016
Henze, D. A., McMahon, D. B., Harris, K. M. & Barrionuevo, G. Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J. Neurophysiol. 87, 15–29 (2002).
pubmed: 11784726 doi: 10.1152/jn.00394.2001
Salin, P. A., Scanziani, M., Malenka, R. C. & Nicoll, R. A. Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc. Natl. Acad. Sci. USA 93, 13304–13309 (1996).
pubmed: 8917586 doi: 10.1073/pnas.93.23.13304
Jackman, S. L., Turecek, J., Belinsky, J. E. & Regehr, W. G. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature 529, 88–91 (2016).
pubmed: 26738595 pmcid: 4729191 doi: 10.1038/nature16507
Griffith, W. H. Voltage-clamp analysis of posttetanic potentiation of the mossy fiber to CA3 synapse in hippocampus. J. Neurophysiol. 63, 491–501 (1990).
pubmed: 2158522 doi: 10.1152/jn.1990.63.3.491
Toth, K., Suares, G., Lawrence, J. J., Philips-Tansey, E. & McBain, C. J. Differential mechanisms of transmission at three types of mossy fiber synapse. J. Neurosci. 20, 8279–8289 (2000).
pubmed: 11069934 pmcid: 6773175 doi: 10.1523/JNEUROSCI.20-22-08279.2000

Auteurs

David Vandael (D)

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.

Yuji Okamoto (Y)

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.

Carolina Borges-Merjane (C)

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.

Victor Vargas-Barroso (V)

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.

Benjamin A Suter (BA)

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.

Peter Jonas (P)

IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria. peter.jonas@ist.ac.at.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH