Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses.
Journal
Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
10
09
2020
accepted:
01
03
2021
pubmed:
16
5
2021
medline:
22
7
2021
entrez:
15
5
2021
Statut:
ppublish
Résumé
Rigorous investigation of synaptic transmission requires analysis of unitary synaptic events by simultaneous recording from presynaptic terminals and postsynaptic target neurons. However, this has been achieved at only a limited number of model synapses, including the squid giant synapse and the mammalian calyx of Held. Cortical presynaptic terminals have been largely inaccessible to direct presynaptic recording, due to their small size. Here, we describe a protocol for improved subcellular patch-clamp recording in rat and mouse brain slices, with the synapse in a largely intact environment. Slice preparation takes ~2 h, recording ~3 h and post hoc morphological analysis 2 d. Single presynaptic hippocampal mossy fiber terminals are stimulated minimally invasively in the bouton-attached configuration, in which the cytoplasmic content remains unperturbed, or in the whole-bouton configuration, in which the cytoplasmic composition can be precisely controlled. Paired pre-postsynaptic recordings can be integrated with biocytin labeling and morphological analysis, allowing correlative investigation of synapse structure and function. Paired recordings can be obtained from mossy fiber terminals in slices from both rats and mice, implying applicability to genetically modified synapses. Paired recordings can also be performed together with axon tract stimulation or optogenetic activation, allowing comparison of unitary and compound synaptic events in the same target cell. Finally, paired recordings can be combined with spontaneous event analysis, permitting collection of miniature events generated at a single identified synapse. In conclusion, the subcellular patch-clamp techniques detailed here should facilitate analysis of biophysics, plasticity and circuit function of cortical synapses in the mammalian central nervous system.
Identifiants
pubmed: 33990799
doi: 10.1038/s41596-021-00526-0
pii: 10.1038/s41596-021-00526-0
doi:
Types de publication
Evaluation Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2947-2967Subventions
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 692692
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : Z 312-B27, Wittgenstein award
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : V 739-B27
Références
Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci. 11, 1496–1507 (1991).
pubmed: 1675264
pmcid: 6575403
doi: 10.1523/JNEUROSCI.11-06-01496.1991
Llinás, R. R. The Squid Giant Synapse: A Model for Chemical Transmission (Oxford University Press, 1999).
Forsythe, I. D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. 479, 381–387 (1994).
pubmed: 7837096
pmcid: 1155757
doi: 10.1113/jphysiol.1994.sp020303
von Gersdorff, H. & Borst, J. G. G. Short-term plasticity at the calyx of Held. Nat. Rev. Neurosci. 3, 53–64 (2002).
doi: 10.1038/nrn705
Neher, E. Some subtle lessons from the calyx of Held synapse. Biophys. J. 112, 215–223 (2017).
pubmed: 28122210
pmcid: 5266140
doi: 10.1016/j.bpj.2016.12.017
Borst, J. G. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).
pubmed: 8837774
doi: 10.1038/383431a0
Vyleta, N. P. & Jonas, P. Loose coupling between Ca
pubmed: 24503854
doi: 10.1126/science.1244811
Lindau, M. & Neher, E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflügers Arch. 411, 137–146 (1988).
pubmed: 3357753
doi: 10.1007/BF00582306
von Gersdorff, H. & Mathews, G. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735–739 (1994).
doi: 10.1038/367735a0
Hallermann, S., Pawlu, C., Jonas, P. & Heckmann, M. A large pool of releasable vesicles in a cortical glutamatergic synapse. Proc. Natl. Acad. Sci. USA 100, 8975–8980 (2003).
pubmed: 12815098
doi: 10.1073/pnas.1432836100
Delvendahl, I., Vyleta, N. P., von Gersdorff, H. & Hallermann, S. Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses. Neuron 90, 492–498 (2016).
pubmed: 27146271
pmcid: 5125781
doi: 10.1016/j.neuron.2016.03.013
Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 6, 863–876 (2005).
pubmed: 16261180
doi: 10.1038/nrn1786
Espinoza, C., Guzman, S. J., Zhang, X. & Jonas, P. Parvalbumin
pubmed: 30389916
pmcid: 6214995
doi: 10.1038/s41467-018-06899-3
Akaike, N., et al. Focal stimulation of single GABAergic presynaptic boutons on the rat hippocampal neuron. Neurosci. Res. 42, 187–195 (2002).
pubmed: 11900828
doi: 10.1016/S0168-0102(01)00320-0
Vyleta, N. P., Borges-Merjane, C. & Jonas, P. Plasticity-dependent, full detonation at hippocampal mossy fiber-CA3 pyramidal neuron synapses. eLife 5, e17977 (2016).
pubmed: 27780032
pmcid: 5079747
doi: 10.7554/eLife.17977
Vandael, D., Borges-Merjane, C., Zhang, X. & Jonas, P. Short-term plasticity at hippocampal mossy fiber synapses is induced by natural activity patterns and associated with vesicle pool engram formation. Neuron 107, 509–521.e7 (2020).
pubmed: 32492366
pmcid: 7427323
doi: 10.1016/j.neuron.2020.05.013
Chicurel, M. E. & Harris, K. M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).
pubmed: 1460112
doi: 10.1002/cne.903250204
Rollenhagen, A. et al. Structural determinants of transmission at large hippocampal mossy fiber synapses. J. Neurosci. 27, 10434–10444 (2007).
pubmed: 17898215
pmcid: 6673150
doi: 10.1523/JNEUROSCI.1946-07.2007
Borges-Merjane, C., Kim, O. & Jonas, P. Functional electron microscopy, ‘flash and freeze,’ of identified cortical synapses in acute brain slices. Neuron 105, 992–1006 (2020).
pubmed: 31928842
pmcid: 7083231
doi: 10.1016/j.neuron.2019.12.022
Rancz, E. A. et al. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450, 1245–1248 (2007).
pubmed: 18097412
pmcid: 5881887
doi: 10.1038/nature05995
Ritzau-Jost, A. et al. Ultrafast action potentials mediate kilohertz signaling at a central synapse. Neuron 84, 152–163 (2014).
pubmed: 25220814
doi: 10.1016/j.neuron.2014.08.036
Vivekananda, U. et al. Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization. Proc. Natl. Acad. Sci. USA 114, 2395–2400 (2017).
pubmed: 28193892
doi: 10.1073/pnas.1608763114
Kawaguchi, S. Y. & Sakaba, T. Fast Ca
pubmed: 29262314
doi: 10.1016/j.celrep.2017.11.072
Ritzau-Jost, A. et al. Large, stable spikes exhibit differential broadening in excitatory and inhibitory neocortical boutons. Cell Rep. 34, 108612 (2021).
pubmed: 33440142
pmcid: 7809622
doi: 10.1016/j.celrep.2020.108612
Geiger, J. R. P. & Jonas, P. Dynamic control of presynaptic Ca
pubmed: 11163277
doi: 10.1016/S0896-6273(00)00164-1
Bischofberger, J., et al. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1, 2075–2081 (2006).
pubmed: 17487197
doi: 10.1038/nprot.2006.312
Perkins, K. L. Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. J. Neurosci. Methods 154, 1–18 (2006).
pubmed: 16554092
pmcid: 2373773
doi: 10.1016/j.jneumeth.2006.02.010
Alcami, P., Franconville, R., Llano, I. & Marty, A. Measuring the firing rate of high-resistance neurons with cell-attached recording. J. Neurosci. 32, 3118–3130 (2012).
pubmed: 22378885
pmcid: 6622012
doi: 10.1523/JNEUROSCI.5371-11.2012
Engel, D. & Jonas, P. Presynaptic action potential amplification by voltage-gated Na
pubmed: 15694327
doi: 10.1016/j.neuron.2004.12.048
Dodt, H. U. & Zieglgänsberger, W. Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci. 17, 453–458 (1994).
pubmed: 7531885
doi: 10.1016/0166-2236(94)90130-9
Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. 472, 615–663 (1993).
pubmed: 7908327
pmcid: 1160505
doi: 10.1113/jphysiol.1993.sp019965
Lawrence, J. J., Grinspan, Z. M. & McBain, C. J. Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. J. Physiol. 554, 175–193 (2004).
pubmed: 14678500
doi: 10.1113/jphysiol.2003.049551
Kamiya, H., Shinozaki, H. & Yamamoto, C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J. Physiol. 493, 447–455 (1996).
pubmed: 8782108
pmcid: 1158929
doi: 10.1113/jphysiol.1996.sp021395
Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522 (1997).
pubmed: 9295396
pmcid: 6573434
doi: 10.1523/JNEUROSCI.17-19-07503.1997
Weisskopf, M. G. & Nicoll, R. A. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Nature 376, 256–259 (1995).
pubmed: 7617037
doi: 10.1038/376256a0
Ben-Simon, Y. et al. A combined optogenetic-knockdown strategy reveals a major role of tomosyn in mossy fiber synaptic plasticity. Cell Rep. 12, 396–404 (2015).
pubmed: 26166572
pmcid: 4525481
doi: 10.1016/j.celrep.2015.06.037
Mori, M., Abegg, M. H., Gähwiler, B. H. & Gerber, U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431, 453–456 (2004).
pubmed: 15386013
doi: 10.1038/nature02854
Bischofberger, J., Geiger, J. R. P. & Jonas, P. Timing and efficacy of Ca
pubmed: 12486151
pmcid: 6758411
doi: 10.1523/JNEUROSCI.22-24-10593.2002
Martinello, K., et al. The subthreshold-active K
pubmed: 31044170
pmcid: 6486593
doi: 10.1038/s42003-019-0408-4
Alle, H. & Geiger, J. R. P. Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293 (2006).
pubmed: 16513983
doi: 10.1126/science.1119055
Szabadics, J. & Soltesz, I. Functional specificity of mossy fiber innervation of GABAergic cells in the hippocampus. J. Neurosci. 29, 4239–4251 (2009).
pubmed: 19339618
pmcid: 6665380
doi: 10.1523/JNEUROSCI.5390-08.2009
Amaral, D. G. & Dent, J. A. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51–86 (1981).
pubmed: 7204652
doi: 10.1002/cne.901950106
Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984–2992 (2011).
pubmed: 21765212
pmcid: 3223924
doi: 10.1172/JCI58050
Geiger, J. R. P. et al. Patch-clamp recording in brain slices with improved slicer technology. Pflügers Arch. 443, 491–501 (2002).
pubmed: 11810221
doi: 10.1007/s00424-001-0735-3
Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch. 414, 600–612 (1989).
pubmed: 2780225
doi: 10.1007/BF00580998
Guzman, S. J., Schlögl, A. & Schmidt-Hieber, C. Stimfit: quantifying electrophysiological data with Python. Front. Neuroinform. 8, 16 (2014).
pubmed: 24600389
pmcid: 3931263
doi: 10.3389/fninf.2014.00016
Williams, S. R. & Mitchell, S. J. Direct measurement of somatic voltage clamp errors in central neurons. Nat. Neurosci. 11, 790–798 (2008).
pubmed: 18552844
doi: 10.1038/nn.2137
del Castillo, J. & Katz, B. Changes in end-plate activity produced by presynaptic polarization. J. Physiol. 124, 586–604 (1954).
pmcid: 1366294
doi: 10.1113/jphysiol.1954.sp005131
Li, L., Bischofberger, J. & Jonas, P. Differential gating and recruitment of P/Q-, N-, and R-type Ca
pubmed: 18057200
pmcid: 6673086
doi: 10.1523/JNEUROSCI.1709-07.2007
Pernía-Andrade, A. J. et al. A deconvolution-based method with high sensitivity and temporal resolution for detection of spontaneous synaptic currents in vitro and in vivo. Biophys. J. 103, 1429–1439 (2012).
pubmed: 23062335
pmcid: 3471482
doi: 10.1016/j.bpj.2012.08.039
Zhang, X., Schlögl, A., Vandael, D. & Jonas, P. MOD: a novel machine-learning optimal-filtering method for accurate and efficient detection of subthreshold synaptic events in vivo. J. Neurosci. Methods https://doi.org/10.1016/j.jneumeth.2021.109125 (2021).
Miyano, R., Miki, T. & Sakaba, T. Ca-dependence of synaptic vesicle exocytosis and endocytosis at the hippocampal mossy fibre terminal. J. Physiol. 597, 4373–4386 (2019).
pubmed: 31294821
doi: 10.1113/JP278040
Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).
pubmed: 10972290
doi: 10.1038/35022702
Bollmann, J. H., Sakmann, B. & Borst, J. G. G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).
pubmed: 10937999
doi: 10.1126/science.289.5481.953
Midorikawa, M. & Sakaba, T. Kinetics of releasable synaptic vesicles and their plastic changes at hippocampal mossy fiber synapses. Neuron 96, 1033–1040 (2017).
pubmed: 29103807
doi: 10.1016/j.neuron.2017.10.016
Henze, D. A., McMahon, D. B., Harris, K. M. & Barrionuevo, G. Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J. Neurophysiol. 87, 15–29 (2002).
pubmed: 11784726
doi: 10.1152/jn.00394.2001
Salin, P. A., Scanziani, M., Malenka, R. C. & Nicoll, R. A. Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc. Natl. Acad. Sci. USA 93, 13304–13309 (1996).
pubmed: 8917586
doi: 10.1073/pnas.93.23.13304
Jackman, S. L., Turecek, J., Belinsky, J. E. & Regehr, W. G. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature 529, 88–91 (2016).
pubmed: 26738595
pmcid: 4729191
doi: 10.1038/nature16507
Griffith, W. H. Voltage-clamp analysis of posttetanic potentiation of the mossy fiber to CA3 synapse in hippocampus. J. Neurophysiol. 63, 491–501 (1990).
pubmed: 2158522
doi: 10.1152/jn.1990.63.3.491
Toth, K., Suares, G., Lawrence, J. J., Philips-Tansey, E. & McBain, C. J. Differential mechanisms of transmission at three types of mossy fiber synapse. J. Neurosci. 20, 8279–8289 (2000).
pubmed: 11069934
pmcid: 6773175
doi: 10.1523/JNEUROSCI.20-22-08279.2000