Deep learning in histopathology: the path to the clinic.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
05 2021
Historique:
received: 18 02 2020
accepted: 31 03 2021
pubmed: 16 5 2021
medline: 24 6 2021
entrez: 15 5 2021
Statut: ppublish

Résumé

Machine learning techniques have great potential to improve medical diagnostics, offering ways to improve accuracy, reproducibility and speed, and to ease workloads for clinicians. In the field of histopathology, deep learning algorithms have been developed that perform similarly to trained pathologists for tasks such as tumor detection and grading. However, despite these promising results, very few algorithms have reached clinical implementation, challenging the balance between hope and hype for these new techniques. This Review provides an overview of the current state of the field, as well as describing the challenges that still need to be addressed before artificial intelligence in histopathology can achieve clinical value.

Identifiants

pubmed: 33990804
doi: 10.1038/s41591-021-01343-4
pii: 10.1038/s41591-021-01343-4
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

775-784

Références

Yu, K. H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018).
pubmed: 31015651 doi: 10.1038/s41551-018-0305-z
Hamet, P. & Tremblay, J. Artificial intelligence in medicine. Metabolism 69, S36–S40 (2017).
doi: 10.1016/j.metabol.2017.01.011
Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).
pubmed: 28778026 doi: 10.1016/j.media.2017.07.005
Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020).
pubmed: 31926805 doi: 10.1016/S1470-2045(19)30739-9
Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017).
pubmed: 29234806 pmcid: 5820737 doi: 10.1001/jama.2017.14585
Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology – new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).
pubmed: 31399699 pmcid: 6880861 doi: 10.1038/s41571-019-0252-y
Fuchs, T. J. & Buhmann, J. M. Computational pathology: challenges and promises for tissue analysis. Comput. Med. Imaging Graph. 35, 515–530 (2011).
pubmed: 21481567 doi: 10.1016/j.compmedimag.2011.02.006
Louis, D. N. et al. Computational pathology: an emerging definition. Arch. Pathol. Lab. Med. 138, 1133–1138 (2014).
pubmed: 25171694 doi: 10.5858/arpa.2014-0034-ED
Mendelsohn, M. L., Kolman, W. A., Perry, B. & Prewitt, J. M. Computer analysis of cell images. Postgrad. Med. 38, 567–573 (1965).
pubmed: 5833526 doi: 10.1080/00325481.1965.11695692
Zwanenburg, A. et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–338 (2020).
pubmed: 32154773 pmcid: 7193906 doi: 10.1148/radiol.2020191145
Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108–113 (2011).
doi: 10.1126/scitranslmed.3002564
Kather, J. N. et al. Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6, 27988 (2016).
pubmed: 27306927 pmcid: 4910082 doi: 10.1038/srep27988
Madabhushi, A. & Lee, G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016).
pubmed: 27423409 pmcid: 5556681 doi: 10.1016/j.media.2016.06.037
Srinidhi, C. L., Ciga, O. & Martel, A. L. Deep neural network models for computational histopathology: a survey. Med. Image Anal. 67, 101813 (2021).
pubmed: 33049577 doi: 10.1016/j.media.2020.101813
Cireşan, D. C., Meier, U., Masci, J., Gambardella, L. M. & Schmidhuber, J. Flexible, high performance convolutional neural networks for image classification. In Proc. 22nd International Joint Conference on Artificial Intelligence 1237–1242 (2011).
Cireşan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Mitosis detection in breast cancer histology images with deep neural networks. In Proc. Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science Vol. 8150, 411–418 (2013).
Cruz-Roa, A. et al. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In Proc. SPIE Medical Imaging Vol. 9041, 904103 (2014).
Ertosun, M. G. & Rubin, D. L. Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. In Proc. American Medical Informatics Association Annual Symposium 1899–1908 (2015).
Wong, G. L. et al. Artificial intelligence in prediction of non-alcoholic fatty liver disease and fibrosis. J. Gastroenterol. Hepatol. 36, 543–550 (2021).
pubmed: 33709607 doi: 10.1111/jgh.15385
Hermsen, M. et al. Deep learning–based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 30, 1968–1979 (2019).
pubmed: 31488607 pmcid: 6779356 doi: 10.1681/ASN.2019020144
Litjens, G. et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016).
pubmed: 27212078 pmcid: 4876324 doi: 10.1038/srep26286
Litjens, G. et al. 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience 7, giy065 (2018).
pmcid: 6007545 doi: 10.1093/gigascience/giy065
Liu, Y. et al. Detecting cancer metastases on gigapixel pathology images. Preprint at https://arxiv.org/abs/1703.02442 (2017).
White House Office of Science and Technology Policy. Preparing for the Future of Artificial Intelligence (2016); https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf
Wang, D., Khosla, A., Gargeya, R., Irshad, H. & Beck, A. H. Deep learning for identifying metastatic breast cancer. Preprint at https://arxiv.org/abs/1606.05718 (2016).
Wang, X. et al. Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans. Cybern. 50, 3950–3962 (2019).
pubmed: 31484154 doi: 10.1109/TCYB.2019.2935141
Syrykh, C. et al. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. NPJ Digital Med. 3, 63 (2020).
doi: 10.1038/s41746-020-0272-0
Tabibu, S., Vinod, P. K. & Jawahar, C. V. Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning. Sci. Rep. 9, 10509 (2019).
pubmed: 31324828 pmcid: 6642160 doi: 10.1038/s41598-019-46718-3
Sari, C. T. & Gunduz-Demir, C. Unsupervised feature extraction via deep learning for histopathological classification of colon tissue images. IEEE Trans. Med. Imaging 38, 1139–1149 (2019).
pubmed: 30403624 doi: 10.1109/TMI.2018.2879369
Rawat, R. R. et al. Deep learned tissue ‘fingerprints’ classify breast cancers by ER/PR/Her2 status from H&E images. Sci. Rep. 10, 7275 (2020).
pubmed: 32350370 pmcid: 7190637 doi: 10.1038/s41598-020-64156-4
Lee, B. & Paeng, K. A robust and effective approach towards accurate metastasis detection and pN-stage classification in breast cancer. In Proc. Medical Image Computing and Computer Assisted Intervention, Lecture Notes in Computer Science Vol. 11071, 841–850 (2018).
Awan, R., Koohbanani, N. A., Shaban, M., Lisowska, A. & Rajpoot, N. Context-aware learning using transferable features for classification of breast cancer histology images. In Proc. International Conference on Image Analysis and Recognition 788–795 (2018).
Feng, Y., Zhang, L. & Mo, J. Deep manifold preserving autoencoder for classifying breast cancer histopathological images. IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 91–101 (2020).
pubmed: 30040652 doi: 10.1109/TCBB.2018.2858763
Galateau Salle, F. et al. Comprehensive molecular and pathologic evaluation of transitional mesothelioma assisted by deep learning approach: a multi-institutional study of the international mesothelioma panel from the MESOPATH Reference Center. J. Thorac. Oncol. 15, 1037–1053 (2020).
pubmed: 32165206 doi: 10.1016/j.jtho.2020.01.025
Iizuka, O. et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Sci. Rep. 10, 1504 (2020).
pubmed: 32001752 pmcid: 6992793 doi: 10.1038/s41598-020-58467-9
Kiani, A. et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Digital Med. 3, 23 (2020).
doi: 10.1038/s41746-020-0232-8
Kwok, S. Multiclass classification of breast cancer in whole-slide images. In Proc. International Conference on Image Analysis and Recognition 931–940 (2018).
Wei, J. W. et al. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 9, 3358 (2019).
pubmed: 30833650 pmcid: 6399447 doi: 10.1038/s41598-019-40041-7
Yang, H., Kim, J. Y., Kim, H. & Adhikari, S. P. Guided soft attention network for classification of breast cancer histopathology images. IEEE Trans. Med. Imaging 39, 1306–1315 (2020).
pubmed: 31634125 doi: 10.1109/TMI.2019.2948026
Pinckaers, H. & Litjens, G. Neural ordinary differential equations for semantic segmentation of individual colon glands. Preprint at https://arxiv.org/abs/1910.10470 (2019).
Naylor, P., Lae, M., Reyal, F. & Walter, T. Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38, 448–459 (2019).
pubmed: 30716022 doi: 10.1109/TMI.2018.2865709
Long, F. Microscopy cell nuclei segmentation with enhanced U-Net. BMC Bioinformatics 21, 8 (2020).
pubmed: 31914944 pmcid: 6950983 doi: 10.1186/s12859-019-3332-1
Jia, Z., Huang, X., Chang, E. I.-C. & Xu, Y. Constrained deep weak supervision for histopathology image segmentation. IEEE Trans. Med. Imaging 36, 2376–2388 (2017).
pubmed: 28692971 doi: 10.1109/TMI.2017.2724070
Graham, S. et al. MILD-Net: minimal information loss dilated network for gland instance segmentation in colon histology images. Med. Image Anal. 52, 199–211 (2019).
pubmed: 30594772 doi: 10.1016/j.media.2018.12.001
Graham, S. et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019).
pubmed: 31561183 doi: 10.1016/j.media.2019.101563
Agarwalla, A., Shaban, M. & Rajpoot, N. M. Representation-aggregation networks for segmentation of multi-gigapixel histology images. Preprint at https://arxiv.org/abs/1707.08814 (2017).
Bueno, G., Fernandez-Carrobles, M. M., Gonzalez-Lopez, L. & Deniz, O. Glomerulosclerosis identification in whole slide images using semantic segmentation. Comput. Methods Prog. Biomed. 184, 105273 (2020).
doi: 10.1016/j.cmpb.2019.105273
Chen, H. et al. DCAN: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017).
pubmed: 27898306 doi: 10.1016/j.media.2016.11.004
de Bel, T. et al. Automatic segmentation of histopathological slides of renal tissue using deep learning. in Proc. SPIE Medical Imaging Digital Pathology, 1058112 (2018); https://doi.org/10.1117/12.2293717
Xu, G. et al. CAMEL: a weakly supervised learning framework for histopathology image segmentation. In Proc. International Conference on Computer Vision 10681–10690 (2019).
Sirinukunwattana, K. et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35, 1196–1206 (2016).
pubmed: 26863654 doi: 10.1109/TMI.2016.2525803
Swiderska-Chadaj, Z. et al. Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 58, 101547 (2019).
pubmed: 31476576 doi: 10.1016/j.media.2019.101547
Le, H. et al. Utilizing automated breast cancer detection to identify spatial distributions of tumor-infiltrating lymphocytes in invasive breast cancer. Am. J. Pathol. 190, 1491–1504 (2020).
pubmed: 32277893 doi: 10.1016/j.ajpath.2020.03.012
Akbar, S. et al. Automated and manual quantification of tumour cellularity in digital slides for tumour burden assessment. Sci. Rep. 9, 14099 (2019).
pubmed: 31576001 pmcid: 6773948 doi: 10.1038/s41598-019-50568-4
Hou, L. et al. Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recognit. 86, 188–200 (2019).
pubmed: 30631215 doi: 10.1016/j.patcog.2018.09.007
Veta, M. et al. Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54, 111–121 (2019).
pubmed: 30861443 doi: 10.1016/j.media.2019.02.012
Tellez, D. et al. Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37, 2126–2136 (2018).
doi: 10.1109/TMI.2018.2820199
Mahmood, T., Arsalan, M., Owais, M., Lee, M. B. & Park, K. R. Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs. J. Clin. Med. 9, 749 (2020).
pmcid: 7141212 doi: 10.3390/jcm9030749
Chen, H., Wang, X. & Heng, P. A. Automated mitosis detection with deep regression networks. In Proc. IEEE International Symposium on Biomedical Imaging 1204–1207 (2016).
Li, C. et al. Weakly supervised mitosis detection in breast histopathology images using concentric loss. Med. Image Anal. 53, 165–178 (2019).
pubmed: 30798116 doi: 10.1016/j.media.2019.01.013
Nagpal, K. et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digital Med. 2, 48 (2019).
doi: 10.1038/s41746-019-0112-2
Jansen, I. et al. Automated detection and grading of non-muscle-invasive urothelial cell carcinoma of the bladder. Am. J. Pathol. 190, 1483–1490 (2020).
pubmed: 32283104 doi: 10.1016/j.ajpath.2020.03.013
Karimi, D. et al. Deep learning-based Gleason grading of prostate cancer from histopathology images—role of multiscale decision aggregation and data augmentation. IEEE J. Biomed. Health Inform. 24, 1413–1426 (2020).
pubmed: 31567104 doi: 10.1109/JBHI.2019.2944643
Korde, L. A. et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J. Clin. Oncol. https://doi.org/10.1200/JCO.20.03399 (2021).
Balkenhol, M. et al. Deep learning assisted mitotic counting for breast cancer. Lab. Invest. 99, 1596–1606 (2019).
pubmed: 31222166 doi: 10.1038/s41374-019-0275-0
Ström, P. et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 21, 222–232 (2020).
pubmed: 31926806 doi: 10.1016/S1470-2045(19)30738-7
Gertych, A. et al. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci. Rep. 9, 1483 (2019).
pubmed: 30728398 pmcid: 6365499 doi: 10.1038/s41598-018-37638-9
Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).
pubmed: 25214542 doi: 10.1093/annonc/mdu450
Saltz, J. et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 23, 181–193 (2018).
pubmed: 29617659 pmcid: 5943714 doi: 10.1016/j.celrep.2018.03.086
AbdulJabbar, K. Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nat. Med. 26, 1054–1062 (2020).
pubmed: 32461698 doi: 10.1038/s41591-020-0900-x
Kather, J. N. et al. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16, e1002730 (2019).
pubmed: 30677016 pmcid: 6345440 doi: 10.1371/journal.pmed.1002730
Geessink, O. G. F. et al. Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer. Cell. Oncol. 42, 331–341 (2019).
doi: 10.1007/s13402-019-00429-z
Kapil, A. et al. DASGAN–joint domain adaptation and segmentation for the analysis of epithelial regions in histopathology PD-L1 images. Preprint at https://arxiv.org/abs/1906.11118 (2019).
Sha, L. et al. Multi-field-of-view deep learning model predicts non small cell lung cancer programmed death-ligand 1 status from whole-slide hematoxylin and eosin images. J. Pathol. Inform. 10, 24 (2019).
pubmed: 31523482 pmcid: 6669997 doi: 10.4103/jpi.jpi_24_19
Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).
pubmed: 31308507 pmcid: 7418463 doi: 10.1038/s41591-019-0508-1
Zhang, Z. et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell. 1, 236–245 (2019).
doi: 10.1038/s42256-019-0052-1
Zhou, C. et al. Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning. Comput. Med. Imaging Graph. 88, 101861 (2021).
pubmed: 33497891 doi: 10.1016/j.compmedimag.2021.101861
Song, Z. et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 11, 4294 (2020).
pubmed: 32855423 pmcid: 7453200 doi: 10.1038/s41467-020-18147-8
Albarqouni, S. et al. AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35, 1313–1321 (2016).
pubmed: 26891484 doi: 10.1109/TMI.2016.2528120
Amgad, M. et al. Structured crowdsourcing enables convolutional segmentation of histology images. Bioinformatics 35, 3461–3467 (2019).
pubmed: 30726865 pmcid: 6748796 doi: 10.1093/bioinformatics/btz083
Bulten, W. et al. Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Sci. Rep. 9, 864 (2019).
pubmed: 30696866 pmcid: 6351532 doi: 10.1038/s41598-018-37257-4
Valkonen, M. et al. Cytokeratin-supervised deep learning for automatic recognition of epithelial cells in breast cancers stained for ER, PR, and Ki-67. IEEE Trans. Med. Imaging 39, 534–542 (2020).
pubmed: 31398111 doi: 10.1109/TMI.2019.2933656
Alemi Koohbanani, N., Jahanifar, M., Zamani Tajadin, N. & Rajpoot, N. NuClick: a deep learning framework for interactive segmentation of microscopic images. Med. Image Anal. 65, 101771 (2020).
pubmed: 32769053 doi: 10.1016/j.media.2020.101771
Bokhorst, J. M. et al. Learning from sparsely annotated data for semantic segmentation in histopathology images. In Proc. International Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research Vol. 102, 84–91 (2019).
Brieu, N. et al. Domain adaptation-based augmentation for weakly supervised nuclei detection. Preprint at https://arxiv.org/abs/1907.04681 (2019).
Gadermayr, M., Gupta, L., Klinkhammer, B. M., Boor, P. & Merhof, D. Unsupervisedly training GANs for segmenting digital pathology with automatically generated annotations. In Proc. International Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research Vol. 102, 175–184 (2019).
Liang, Q. et al. Weakly supervised biomedical image segmentation by reiterative learning. IEEE J. Biomed. Health Inform. 23, 1205–1214 (2019).
pubmed: 29994489 doi: 10.1109/JBHI.2018.2850040
Gao, S. et al. Using case-level context to classify cancer pathology reports. PLoS ONE 15, e0232840 (2020).
pubmed: 32396579 pmcid: 7217446 doi: 10.1371/journal.pone.0232840
Alawad, M. et al. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks. J. Am. Med. Inform. Assoc. 27, 89–98 (2020).
pubmed: 31710668 doi: 10.1093/jamia/ocz153
Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).
pubmed: 30224757 doi: 10.1038/s41591-018-0177-5
Pawlowski, N. et al. Needles in haystacks: on classifying tiny objects in large images. Preprint at https://arxiv.org/abs/1908.06037 (2019).
Ilse, M., Tomczak, J. M. & Welling, M. Attention-based deep multiple instance learning. In Proc. International Conference on Machine Learning, Proceedings of Machine Learning Research Vol. 80, 2127–2136 (2018).
Hou, L. et al. Patch-based convolutional neural network for whole slide tissue image classification. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2424–2433 (2016).
Lu, M. Y. et al. Data efficient and weakly supervised computational pathology on whole slide images. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-00682-w (2021).
Tellez, D., Litjens, G., van der Laak, J. & Ciompi, F. Neural image compression for gigapixel histopathology image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43, 567–578 (2021).
pubmed: 31442971 doi: 10.1109/TPAMI.2019.2936841
Pinckaers, J. H. F. M., van Ginneken, B. & Litjens, G. Streaming convolutional neural networks for end-to-end learning with multi-megapixel images. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.2020.3019563 (2020).
Wulczyn, E. et al. Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE 15, e0233678 (2020).
pubmed: 32555646 pmcid: 7299324 doi: 10.1371/journal.pone.0233678
Skrede, O. J. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 395, 350–360 (2020).
pubmed: 32007170 doi: 10.1016/S0140-6736(19)32998-8
Saillard, C. et al. Predicting survival after hepatocellular carcinoma resection using deep-learning on histological slides. Hepatology 72, 2000–2013 (2020).
pubmed: 32108950 doi: 10.1002/hep.31207
Qaiser, T. et al. Digital tumor-collagen proximity signature predicts survival in diffuse large B-cell lymphoma. In Proc. European Congress on Digital Pathology, Lecture Notes in Computer Science Vol. 11435, 163–171 (2019).
Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl Acad. Sci. USA 115, E2970–E2979 (2018).
pubmed: 29531073 doi: 10.1073/pnas.1717139115
Bychkov, D. et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8, 3395 (2018).
pubmed: 29467373 pmcid: 5821847 doi: 10.1038/s41598-018-21758-3
Courtiol, P. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25, 1519–1525 (2019).
pubmed: 31591589 doi: 10.1038/s41591-019-0583-3
Kulkarni, P. M. et al. Deep learning based on standard H&E images of primary melanoma tumors identifies patients at risk for visceral recurrence and death. Clin. Cancer Res. 26, 1126–1134 (2020).
pubmed: 31636101 doi: 10.1158/1078-0432.CCR-19-1495
Cui, D., Liu, Y., Liu, G. & Liu, L. A multiple-instance learning-based convolutional neural network model to detect the IDH1 mutation in the histopathology images of glioma tissues. J. Comput. Biol. 27, 1264–1272 (2020).
pubmed: 31905004 doi: 10.1089/cmb.2019.0410
Liu, S. et al. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning. Sci. Rep. 10, 7733 (2020).
pubmed: 32382048 pmcid: 7206037 doi: 10.1038/s41598-020-64588-y
Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).
pubmed: 31160815 pmcid: 7423299 doi: 10.1038/s41591-019-0462-y
Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).
pubmed: 33763651 pmcid: 7610412 doi: 10.1038/s43018-020-0087-6
Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).
doi: 10.1038/s43018-020-0085-8
Schmauch, B. et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 11, 3877 (2020).
pubmed: 32747659 pmcid: 7400514 doi: 10.1038/s41467-020-17678-4
Couture, H. D. et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 4, 30 (2018).
pubmed: 30182055 pmcid: 6120869 doi: 10.1038/s41523-018-0079-1
Sirinukunwattana, K. et al. Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut 70, 544–554 (2021).
pubmed: 32690604 doi: 10.1136/gutjnl-2019-319866
Durán, J. M. & Jongsma, K. R. Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI. J. Med Ethics https://doi.org/10.1136/medethics-2020-106820 (2021).
Abels, E. et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. J. Pathol. 249, 286–294 (2019).
pubmed: 31355445 pmcid: 6852275 doi: 10.1002/path.5331
Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G. & King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17, 195 (2019).
pubmed: 31665002 pmcid: 6821018 doi: 10.1186/s12916-019-1426-2
McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020).
pubmed: 31894144 doi: 10.1038/s41586-019-1799-6
Panch, T., Mattie, H. & Atun, R. Artificial intelligence and algorithmic bias: implications for health systems. J. Glob. Health 9, 010318 (2019).
pubmed: 31788229 doi: 10.7189/jogh.09.020318
de Bel, T., Hermsen, M., Kers, J., van der Laak, J. & Litjens, G. J. S. Stain-transforming cycle-consistent generative adversarial networks for improved segmentation of renal histopathology. In Proc. International Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research Vol. 102, 151–163 (2019).
Liu, Y. et al. Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch. Pathol. Lab. Med. 143, 859–868 (2019).
pubmed: 30295070 doi: 10.5858/arpa.2018-0147-OA
Tellez, D. et al. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019).
pubmed: 31466046 doi: 10.1016/j.media.2019.101544
Cho, H., Lim, S., Choi, G. & Min, H. Neural stain-style transfer learning using GAN for histopathological images. Preprint at https://arxiv.org/abs/1710.08543 (2017).
Janowczyk, A., Basavanhally, A. & Madabhushi, A. Stain Normalization using Sparse AutoEncoders (StaNoSA): application to digital pathology. Comput. Med. Imaging Graph. 57, 50–61 (2017).
pubmed: 27373749 doi: 10.1016/j.compmedimag.2016.05.003
Shaban, M. T., Baur, C., Navab, N. & Albarqouni, S. StainGAN: stain style transfer for digital histological images. In Proc. IEEE International Symposium on Biomedical Imaging 953–956 (2019).
Zheng, Y. et al. Stain standardization capsule for application-driven histopathological image normalization. IEEE J. Biomed. Health Inform. 25, 337–347 (2021).
pubmed: 32248128 doi: 10.1109/JBHI.2020.2983206
Linmans, J., van der Laak, J. & Litjens, G. Efficient out-of-distribution detection in digital pathology using multi-head convolutional neural networks. In Proc. Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research Vol. 121, 465–478 (2020).
Kohl, S. et al. A probabilistic U-Net for segmentation of ambiguous images. Adv. Neural Inf. Process. Syst. (2018).
Kleppe, A. et al. Designing deep learning studies in cancer diagnostics. Nat. Rev. Cancer 21, 199–211 (2021).
pubmed: 33514930 doi: 10.1038/s41568-020-00327-9
Staartjes, V. E. & Kernbach, J. M. Significance of external validation in clinical machine learning: let loose too early. Spine J. 20, 1159–1160 (2020).
pubmed: 32624150 doi: 10.1016/j.spinee.2020.02.016
Beede, E. et al. A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In Proc. CHI Conference on Human Factors in Computing Systems 1–12 (2020).
Dudgeon, S. N. et al. A pathologist-annotated dataset for validating artificial intelligence: a project description and pilot study. Preprint at https://arxiv.org/abs/2010.06995 (2020).
Nagendran, M. et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368, m689 (2020).
pubmed: 32213531 pmcid: 7190037 doi: 10.1136/bmj.m689
Allen, T. C. Regulating artificial intelligence for a successful pathology future. Arch. Pathol. Lab. Med. 143, 1175–1179 (2019).
pubmed: 31268373 doi: 10.5858/arpa.2019-0229-ED
Dong, J. et al. Clinical trials for artificial intelligence in cancer diagnosis: a cross-sectional study of registered trials in ClinicalTrials.gov. Front. Oncol. 15, 1629 (2020).
doi: 10.3389/fonc.2020.01629
Collins, G. S. & Moons, K. G. M. Reporting of artificial intelligence prediction models. Lancet 393, 1577–1579 (2019).
pubmed: 31007185 doi: 10.1016/S0140-6736(19)30037-6
Chen, P. H. C. et al. An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat. Med. 25, 1453–1457 (2019).
pubmed: 31406351 doi: 10.1038/s41591-019-0539-7
Guidotti, R. et al. A survey of methods for explaining black box models. ACM Comput. Surv. 51, 93 (2019).
doi: 10.1145/3236009
Kroll, J. A. The fallacy of inscrutability. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20180084 (2018).
doi: 10.1098/rsta.2018.0084
US Food and Drug Administration (FDA). Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)—Discussion Paper and Request for Feedback. https://www.fda.gov/files/medicaldevices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf (accessed 3 May, 2021).
Price, W. N. & Cohen, I. G. Privacy in the age of medical big data. Nat. Med. 25, 37–43 (2019).
pubmed: 30617331 pmcid: 6376961 doi: 10.1038/s41591-018-0272-7
Laï, M. C., Brian, M. & Mamzer, M. F. Perceptions of artificial intelligence in healthcare: findings from a qualitative survey study among actors in France. J. Transl. Med. 18, 14 (2020).
pubmed: 31918710 pmcid: 6953249 doi: 10.1186/s12967-019-02204-y
Rieke, N. et al. The future of digital health with federated learning. NPJ Digit. Med. 3, 119 (2020).
pubmed: 33015372 pmcid: 7490367 doi: 10.1038/s41746-020-00323-1
Sheller, M. J. et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10, 12598 (2020).
pubmed: 32724046 pmcid: 7387485 doi: 10.1038/s41598-020-69250-1
European Commission. Ethics Guidelines for Trustworthy AI (2019); https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
Sirinukunwattana, K. et al. Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017).
pubmed: 27614792 doi: 10.1016/j.media.2016.08.008
Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Proc. Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science Vol. 9351, 234–241 (2015).

Auteurs

Jeroen van der Laak (J)

Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands. jeroen.vanderlaak@radboudumc.nl.
Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden. jeroen.vanderlaak@radboudumc.nl.

Geert Litjens (G)

Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.

Francesco Ciompi (F)

Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH