Studying the Utility of Using Genetics to Predict Smoking-Related Outcomes in a Population-Based Study and a Selected Cohort.
Journal
Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco
ISSN: 1469-994X
Titre abrégé: Nicotine Tob Res
Pays: England
ID NLM: 9815751
Informations de publication
Date de publication:
05 11 2021
05 11 2021
Historique:
received:
24
11
2020
accepted:
10
05
2021
pubmed:
16
5
2021
medline:
6
1
2022
entrez:
15
5
2021
Statut:
ppublish
Résumé
The purpose of this study is to examine the predictive utility of polygenic risk scores (PRSs) for smoking behaviors. Using summary statistics from the Sequencing Consortium of Alcohol and Nicotine use consortium, we generated PRSs of ever smoking, age of smoking initiation, cigarettes smoked per day, and smoking cessation for participants in the population-based Atherosclerosis Risk in Communities (ARIC) study (N = 8638), and the Collaborative Genetic Study of Nicotine Dependence (COGEND) (N = 1935). The outcomes were ever smoking, age of smoking initiation, heaviness of smoking, and smoking cessation. In the European ancestry cohorts, each PRS was significantly associated with the corresponding smoking behavior outcome. In the ARIC cohort, the PRS z-score for ever smoking predicted smoking (odds ratio [OR]: 1.37; 95% confidence interval [CI]: 1.31, 1.43); the PRS z-score for age of smoking initiation was associated with age of smoking initiation (OR: 0.87; 95% CI: 0.82, 0.92); the PRS z-score for cigarettes per day was associated with heavier smoking (OR: 1.17; 95% CI: 1.11, 1.25); and the PRS z-score for smoking cessation predicted successful cessation (OR: 1.24; 95% CI: 1.17, 1.32). In the African ancestry cohort, the PRSs did not predict smoking behaviors. Smoking-related PRSs were associated with smoking-related behaviors in European ancestry populations. This improvement in prediction is greatest in the lowest and highest genetic risk categories. The lack of prediction in African ancestry populations highlights the urgent need to increase diversity in research so that scientific advances can be applied to populations other than those of European ancestry. This study shows that including both genetic ancestry and PRSs in a single model increases the ability to predict smoking behaviors compared with the model including only demographic characteristics. This finding is observed for every smoking-related outcome. Even though adding genetics is more predictive, the demographics alone confer substantial and meaningful predictive power. However, with increasing work in PRSs, the predictive ability will continue to improve.
Identifiants
pubmed: 33991188
pii: 6276224
doi: 10.1093/ntr/ntab100
pmc: PMC8570670
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2110-2116Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL109031
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG004402
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA042195
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA091842
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700005I
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002345
Pays : United States
Organisme : NIA NIH HHS
ID : R56 AG058726
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700005C
Pays : United States
Organisme : NIMH NIH HHS
ID : T32 MH014677
Pays : United States
Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.
Références
Nicotine Tob Res. 2012 Apr;14(4):425-33
pubmed: 22102629
Nicotine Tob Res. 1999;1 Suppl 2:S51-7; discussion S69-70
pubmed: 11768187
Bioinformatics. 2015 May 1;31(9):1466-8
pubmed: 25550326
Nature. 2014 Jul 24;511(7510):421-7
pubmed: 25056061
Nat Genet. 2019 Apr;51(4):584-591
pubmed: 30926966
Br J Addict. 1991 Sep;86(9):1119-27
pubmed: 1932883
Eur Urol. 2011 Jul;60(1):21-8
pubmed: 21295399
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
Nat Genet. 2006 Aug;38(8):904-9
pubmed: 16862161
Arch Pediatr Adolesc Med. 2012 Jun 1;166(6):515-21
pubmed: 22665028
JAMA Psychiatry. 2013 May;70(5):534-42
pubmed: 23536134
JAMA Oncol. 2016 Oct 1;2(10):1295-1302
pubmed: 27228256
Nat Genet. 2016 Oct;48(10):1284-1287
pubmed: 27571263
Behav Genet. 2020 Jul;50(4):203-212
pubmed: 31346826
Behav Genet. 2005 Jul;35(4):397-406
pubmed: 15971021
Sci Rep. 2020 Jun 2;10(1):8941
pubmed: 32488059
MMWR Morb Mortal Wkly Rep. 2017 Jan 06;65(52):1457-1464
pubmed: 28056007
JAMA. 1998 Jan 14;279(2):119-24
pubmed: 9440661
MMWR Morb Mortal Wkly Rep. 2018 Nov 09;67(44):1225-1232
pubmed: 30408019
MMWR Morb Mortal Wkly Rep. 2020 Nov 20;69(46):1736-1742
pubmed: 33211681
Genes Brain Behav. 2010 Oct;9(7):741-50
pubmed: 20584212
Am J Psychiatry. 2008 Sep;165(9):1163-71
pubmed: 18519524
Curr Psychiatry Rep. 2018 Mar 5;20(2):8
pubmed: 29504045
Cell. 2019 Apr 18;177(3):587-596.e9
pubmed: 31002795
Nat Genet. 2019 Feb;51(2):237-244
pubmed: 30643251