Serum IgG1 and IgG4 could contribute to partial control of viral rebound in chronically HIV-1-infected patients.


Journal

AIDS (London, England)
ISSN: 1473-5571
Titre abrégé: AIDS
Pays: England
ID NLM: 8710219

Informations de publication

Date de publication:
01 08 2021
Historique:
pubmed: 17 5 2021
medline: 7 8 2021
entrez: 16 5 2021
Statut: ppublish

Résumé

Few studies have investigated chronically infected individuals after antiretroviral therapy (ART) interruption (ATI, analytical therapy interruption); thus, we investigated the association between some HIV-specific antibodies and viral control. All enrolled patients were previously described in the APACHE study. Briefly, the study was conducted on HIV-1 chronically infected patients, with HIV-RNA less than 50 copies/ml for at least 10 years, CD4+ cell count greater than 500 cells/μl and HIV-DNA less than 100 copies/106 PBMC. The ART regimen in use at the time of ATI was resumed at confirmed viral rebound (CVR, defined as two consecutive HIV-RNA >50 copies/ml). Collection of sera and analysis of both binding antibodies (BAbs) and neutralizing antibodies (NAbs) was performed at three different time points: ATI, CVR and time of viral re-suppression after ART resumption. IgG subclasses (IgG1, IgG2, IgG3 and IgG4) from the four patients with highest levels of neutralization were found to block viral infection. All patients had CVR after ATI at a median time of 21 days (14-56). After ART resumption, all the enrolled patients achieved HIV-RNA less than 50 copies/ml in 42 days (21-98). We observed a strong increase of either BAbs and NAbs titers from ATI to viral re-suppression in one patient, who showed the longest period of virus undetectability during ATI. In this patient, BAbs and NAbs specifically belonged to both IgG1 and IgG4 subclasses, directed to env antigen. env-specific NAbs and BAbs belonging to IgG1, IgG4 subclasses could be helpful to monitor long-term responses able to control virus replication and eradicate HIV infection.

Identifiants

pubmed: 33993130
doi: 10.1097/QAD.0000000000002944
pii: 00002030-202108010-00003
doi:

Substances chimiques

Immunoglobulin G 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1549-1559

Informations de copyright

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

Références

Etemad B, Esmaeilzadeh E, Li JZ. Learning from the exceptions: HIV remission in post-treatment controllers . Front Immunol 2019; 10:1749.
Pannus P, Rutsaert S, De Wit S, Allard SD, Vanham G, Cole B, et al. Rapid viral rebound after analytical treatment interruption in patients with very small HIV reservoir and minimal on-going viral transcription . J Int AIDS Soc 2020; 23:e25453.
Frange P, Faye A, Avettand-Fenoël V, Bellaton E, Descamps D, et al. ANRS EPF-CO10 Pediatric Cohort and the ANRS EP47 VISCONTI study group. HIV-1 virological remission lasting more than 12 years after interruption of early antiretroviral therapy in a perinatally infected teenager enrolled in the French ANRS EPF-CO10 paediatric cohort: a case report . Lancet HIV 2016; 3:e49–e54.
Luzuriaga K, Gay H, Ziemniak C, Sanborn KB, Somasundaran M, Rainwater-Lovett K, et al. Viremic relapse after HIV-1 remission in a perinatally infected child . N Engl J Med 2015; 372:786–788.
Hurst J, Hoffmann M, Pace M, Williams J, Thornhill J, Hamlyn E, et al. Immunological biomarkers predict HIV-1 viral rebound after treatment interruption . Nat Commun 2015; 6:8495.
Sáez-Cirión A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, et al. ANRS VISCONTI Study Group. Posttreatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study . PLoS Pathog 2013; 9:e1003211.
Klein F, Mouquet H, Dosenovic P, Scheid JF, Scharf L, Nussenzweig MC. Antibodies in HIV-1 vaccine development and therapy . Science 2013; 341:1199–1204.
Castagna A, Muccini C, Galli L, Bigoloni A, Poli A, Spagnuolo V, et al. Analytical treatment interruption in chronic HIV-1 infection: time and magnitude of viral rebound in adults with 10 years of undetectable viral load and low HIV-DNA (APACHE study) . J Antimicrob Chemother 2019; 74:2039–2046.
Mestecky J, Wright PF, Lopalco L, Staats HF, Kozlowski PA, Moldoveanu Z, et al. Scarcity or absence of humoral immune responses in the plasma and cervicovaginal lavage fluids of heavily HIV-1-exposed but persistently seronegative women . AIDS Res Hum Retroviruses 2011; 27:469–486.
Mascola JR, D'Souza P, Gilbert P, Hahn BH, Haigwood NL, Morris L, et al. Recommendations for the design and use of standard virus panels to assess neutralizing antibody responses elicited by candidate human immunodeficiency virus type 1 vaccines . J Virol 2005; 79:10103–10107.
Landais E, Moore PL. Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers . Retrovirology 2018; 15:61.
Tay MZ, Kunz EL, Deal A, Zhang L, Seaton KE, Rountree W, et al. Rare detection of antiviral functions of polyclonal IgA isolated from plasma and breast milk compartments in women chronically infected with HIV-1 . J Virol 2019; 93:e02084–18.
Wills S, Hwang K-K, Liu P, Dennison SM, Tay MZ, Shen X, et al. HIV-1-specific IgA monoclonal antibodies from an HIV-1 vaccinee mediate galactosylceramide blocking and phagocytosis . J Virol 2018; 92:e01552–17.
Fischinger S, Dolatshahi S, Jennewein MF, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. IgG3 collaborates with IgG1 and IgA to recruit effector function in RV144 vaccinees . JCI Insight 2020; 5:e140925.
Van Gulck E, Bracke L, Heyndrickx L, Coppens S, Atkinson D, Merlin C, et al. Immune and viral correlates of ‘secondary viral control’ after treatment interruption in chronically HIV-1 infected patients . PloS One 2012; 7:e37792.
Ortiz GM, Wellons M, Brancato J, Vo HT, Zinn RL, Clarkson DE, et al. Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects . Proc Natl Acad Sci U S A 2001; 98:13288–13293.
Bertagnolli LN, Varriale J, Sweet S, Brockhurst J, Simonetti FR, White J, et al. Autologous IgG antibodies block outgrowth of a substantial but variable fraction of viruses in the latent reservoir for HIV-1 . Proc Natl Acad Sci U S A 2020; 117:32066–32077.
Stephenson KE, Neubauer GH, Bricault CA, Shields J, Bayne M, Reimer U, et al. Antibody responses after analytic treatment interruption in human immunodeficiency virus-1-infected individuals on early initiated antiretroviral therapy . Open Forum Infect Dis 2016; 3:ofw100.
French MA, Tjiam MC, Abudulai LN, Fernandez S. Antiviral functions of human immunodeficiency virus type 1 (HIV-1)-specific IgG antibodies: effects of antiretroviral therapy and implications for therapeutic HIV-1 vaccine design . Front Immunol 2017; 8:780.
Tomaras GD, Haynes BF. HIV-1-specific antibody responses during acute and chronic HIV-1 infection . Curr Opin HIV AIDS 2009; 4:373–379.
Banerjee K, Klasse PJ, Sanders RW, Pereyra F, Michael E, Lu M, et al. IgG subclass profiles in infected HIV type 1 controllers and chronic progressors and in uninfected recipients of Env vaccines . AIDS Res Hum Retroviruses 2010; 26:445–458.
Kadelka C, Liechti T, Ebner H, Schanz M, Rusert P, Swiss HIV Cohort Study, et al. Swiss HIV Cohort Study. Distinct, IgG1-driven antibody response landscapes demarcate individuals with broadly HIV-1 neutralizing activity . J Exp Med 2018; 215:1589–1608.
Sadanand S, Das J, Chung AW, Schoen MK, Lane S, Suscovich TJ, et al. Temporal variation in HIV-specific IgG subclass antibodies during acute infection differentiates spontaneous controllers from chronic progressors . AIDS Lond Engl 2018; 32:443–450.
Hui GK, Gardener AD, Begum H, Eldrid C, Thalassinos K, Gor J, Perkins SJ. The solution structure of the human IgG2 subclass is distinct from those for human IgG1 and IgG4 providing an explanation for their discrete functions . J Biol Chem 2019; 294:10789–10806.
Richardson SI, Lambson BE, Crowley AR, Bashirova A, Scheepers C, Garrett N, et al. IgG3 enhances neutralization potency and Fc effector function of an HIV V2-specific broadly neutralizing antibody . PLoS Pathog 2019; 15:e1008064.
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions . Front Immunol 2014; 5:520.
van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martínez-Martínez P, Vermeulen E, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange . Science 2007; 317:1554–1557.
Aalberse RC, Stapel SO, Schuurman J, Rispens T. Immunoglobulin G4: an odd antibody . Clin Exp Allergy J Br Soc Allergy Clin Immunol 2009; 39:469–477.
Bianchini R, Karagiannis SN, Jordakieva G, Jensen-Jarolim E. The role of IgG4 in the fine tuning of tolerance in IgE-mediated allergy and cancer . Int J Mol Sci 2020; 21:5017.
Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey DJ, et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity . J Clin Invest 2013; 123:2183–2192.
Lambotte O, Ferrari G, Moog C, Yates NL, Liao HX, Parks RJ, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers . AIDS Lond Engl 2009; 23:897–906.
Giron LB, Papasavvas E, Azzoni L, Yin X, Anzurez A, Damra M, et al. Plasma and antibody glycomic biomarkers of time to HIV rebound and viral setpoint . AIDS 2020; 34:681–686.
Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose . Proc Natl Acad Sci U S A 2011; 108:12669–12674.
Forthal DN, Gach JS, Landucci G, Jez J, Strasser R, Kunert R, Steinkellner H. Fc-glycosylation influences Fc γ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12 . J Immunol 2010; 185:6876–6882.
Masuda K, Kubota T, Kaneko E, Iida S, Wakitani M, Kobayashi-Natsume Y, et al. Enhanced binding affinity for FcgammaRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity . Mol Immunol 2007; 44:3122–3131.
Chung AW, Crispin M, Pritchard L, Robinson H, Gorny MK, Yu X, et al. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function . AIDS Lond Engl 2014; 28:2523–2530.
Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity . J Biol Chem 2003; 278:3466–3473.
Burton DR, Hessell AJ, Keele BF, Klasse PJ, Ketas TA, Moldt B, et al. Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody . Proc Natl Acad Sci U S A 2011; 108:11181–11186.
Dugast A-S, Chan Y, Hoffner M, Licht A, Nkolola J, Li H, et al. Lack of protection following passive transfer of polyclonal highly functional low-dose nonneutralizing antibodies . PloS One 2014; 9:e97229.
Hessell AJ, Poignard P, Hunter M, Hangartner L, Tehrani DM, Bleeker WK, et al. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques . Nat Med 2009; 15:951–954.
Danesh A, Ren Y, Brad Jones R. Roles of fragment crystallizable-mediated effector functions in broadly neutralizing antibody activity against HIV . Curr Opin HIV AIDS 2020; 15:316–323.
Medina-Ramírez M, Sánchez-Merino V, Sánchez-Palomino S, Merino-Mansilla A, Ferreira CB, Pérez I, et al. Broadly cross-neutralizing antibodies in HIV-1 patients with undetectable viremia . J Virol 2011; 85:5804–5813.
González N, McKee K, Lynch RM, Georgiev IS, Jimenez L, Grau E, et al. Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term nonprogressors . PloS One 2018; 13:e0193773.
Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, et al. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller . Sci Transl Med 2017; 9:eaal2144.
Doria-Rose NA, Klein RM, Daniels MG, O’Dell S, Nason M, Lapedes A, et al. Breadth of human immunodeficiency virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables . J Virol 2010; 84:1631–1636.
Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, Rathod A, et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy . J Infect Dis 2008; 197:563–571.
Uruena A, Cassetti I, Kashyap N, Deleage C, Estes JD, Trindade C, et al. Prolonged posttreatment virologic control and complete seroreversion after advanced human immunodeficiency virus-1 infection . Open Forum Infect Dis 2021; 8:ofaa613.
Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation . N Engl J Med 2009; 360:692–698.
Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5(32/(32 haematopoietic stem-cell transplantation . Nature 2019; 568:244–248.

Auteurs

Claudia Pastori (C)

Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute.

Laura Galli (L)

Infectious Diseases, San Raffaele Scientific Institute.

Gabriel Siracusano (G)

Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute.

Vincenzo Spagnuolo (V)

Vita-Salute San Raffaele University, Milan, Italy.

Camilla Muccini (C)

Infectious Diseases, San Raffaele Scientific Institute.

Andrea Mastrangelo (A)

Vita-Salute San Raffaele University, Milan, Italy.

Elena Bruzzesi (E)

Vita-Salute San Raffaele University, Milan, Italy.

Martina Ranzenigo (M)

Vita-Salute San Raffaele University, Milan, Italy.

Matteo Chiurlo (M)

Vita-Salute San Raffaele University, Milan, Italy.

Antonella Castagna (A)

Infectious Diseases, San Raffaele Scientific Institute.
Vita-Salute San Raffaele University, Milan, Italy.

Lucia Lopalco (L)

Immunobiology of HIV, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH