The supplementary motor area syndrome: a neurosurgical review.


Journal

Neurosurgical review
ISSN: 1437-2320
Titre abrégé: Neurosurg Rev
Pays: Germany
ID NLM: 7908181

Informations de publication

Date de publication:
Feb 2022
Historique:
received: 08 02 2021
accepted: 06 05 2021
revised: 19 04 2021
pubmed: 17 5 2021
medline: 12 2 2022
entrez: 16 5 2021
Statut: ppublish

Résumé

The supplementary motor area (SMA) syndrome is a frequently encountered clinical phenomenon associated with surgery of the dorsomedial prefrontal lobe. The region has a known motor sequencing function and the dominant pre-SMA specifically is associated with more complex language functions; the SMA is furthermore incorporated in the negative motor network. The SMA has a rich interconnectivity with other cortical regions and subcortical structures using the frontal aslant tract (FAT) and the frontostriatal tract (FST). The development of the SMA syndrome is positively correlated with the extent of resection of the SMA region, especially its medial side. This may be due to interruption of the nearby callosal association fibres as the contralateral SMA has a particular important function in brain plasticity after SMA surgery. The syndrome is characterized by a profound decrease in interhemispheric connectivity of the motor network hubs. Clinical improvement is related to increasing connectivity between the contralateral SMA region and the ipsilateral motor hubs. Overall, most patients know a full recovery of the SMA syndrome, however a minority of patients might continue to suffer from mild motor and speech dysfunction. Rarely, no recovery of neurological function after SMA region resection is reported.

Identifiants

pubmed: 33993354
doi: 10.1007/s10143-021-01566-6
pii: 10.1007/s10143-021-01566-6
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

81-90

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Acioly MA, Cunha AM, Parise M, Rodrigues E, Tovar-Moll F (2015) Recruitment of contralateral supplementary motor area in functional recovery following medial frontal lobe surgery: an fMRI case study. J Neurol Surg A Cent Eur Neurosurg 76(6):508–512. https://doi.org/10.1055/s-0035-1558408
doi: 10.1055/s-0035-1558408 pubmed: 26291886
Baker CM, Burks JD, Briggs RG, Smitherman AD, Glenn CA, Conner AK et al (2018) The crossed frontal aslant tract: a possible pathway involved in the recovery of supplementary motor area syndrome. Brain Behav 8(3):e00926. https://doi.org/10.1002/brb3.926
doi: 10.1002/brb3.926 pubmed: 29541539 pmcid: 5840439
Bozkurt B, Yagmurlu K, Middlebrooks EH, Karadag A, Ovalioglu TC, Jagadeesan B et al (2016) Microsurgical and tractographic anatomy of the supplementary motor area complex in humans. World Neurosurg 95:99–107. https://doi.org/10.1016/j.wneu.2016.07.072
doi: 10.1016/j.wneu.2016.07.072 pubmed: 27476690
Briggs RG, Khan AB, Chakraborty AR, Abraham CJ, Anderson CD, Karas PJ et al (2020) Anatomy and white matter connections of the superior frontal gyrus. Clin Anat (New York, NY) 33(6):823–832. https://doi.org/10.1002/ca.23523
doi: 10.1002/ca.23523
Catani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P et al (2012) Short frontal lobe connections of the human brain. Cortex 48(2):273–291. https://doi.org/10.1016/j.cortex.2011.12.001
doi: 10.1016/j.cortex.2011.12.001 pubmed: 22209688
Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C et al (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136(Pt 8):2619–2628. https://doi.org/10.1093/brain/awt163
doi: 10.1093/brain/awt163 pubmed: 23820597 pmcid: 3722349
Chainay H, Francois-Xaxier A, Alexandre K, Hugues D, Laurent C, Emmanuelle V et al (2009) Motor and language deficits before and after surgical resection of mesial frontal tumour. Clin Neurol Neurosurg 111(1):39–46. https://doi.org/10.1016/j.clineuro.2008.07.004
doi: 10.1016/j.clineuro.2008.07.004 pubmed: 18845388
Chang EF, Raygor KP, Berger MS (2015) Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 122(2):250–261. https://doi.org/10.3171/2014.10.JNS132647
doi: 10.3171/2014.10.JNS132647 pubmed: 25423277
Chernoff BL, Teghipco A, Garcea FE, Sims MH, Paul DA, Tivarus ME et al (2018) A role for the frontal aslant tract in speech planning: a neurosurgical case study. J Cogn Neurosci 30(5):752–769. https://doi.org/10.1162/jocn_a_01244
doi: 10.1162/jocn_a_01244 pubmed: 29569513
Chivukula S, Pikul BK, Black KL, Pouratian N, Bookheimer SY (2018) Contralateral functional reorganization of the speech supplementary motor area following neurosurgical tumor resection. Brain Lang 183:41–46. https://doi.org/10.1016/j.bandl.2018.05.006
doi: 10.1016/j.bandl.2018.05.006 pubmed: 29783125 pmcid: 6499625
Cona G, Semenza C (2017) Supplementary motor area as key structure for domain-general sequence processing: a unified account. Neurosci Biobehav Rev 72:28–42. https://doi.org/10.1016/j.neubiorev.2016.10.033
doi: 10.1016/j.neubiorev.2016.10.033 pubmed: 27856331
De Benedictis A, Duffau H (2011) Brain hodotopy: from esoteric concept to practical surgical applications. Neurosurgery 68(6):1709–1723; discussion 23. https://doi.org/10.1227/NEU.0b013e3182124690
Dick AS, Garic D, Graziano P, Tremblay P (2019) The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex 111:148–163. https://doi.org/10.1016/j.cortex.2018.10.015
doi: 10.1016/j.cortex.2018.10.015 pubmed: 30481666
Duffau H (2008) The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia 46(4):927–934. https://doi.org/10.1016/j.neuropsychologia.2007.10.025
doi: 10.1016/j.neuropsychologia.2007.10.025 pubmed: 18093622
Duffau H (2020) Functional mapping before and after low-grade glioma surgery: a new way to decipher various spatiotemporal patterns of individual neuroplastic potential in brain tumor patients. Cancers 12(9). https://doi.org/10.3390/cancers12092611
Duffau H, Capelle L (2004) Preferential brain locations of low-grade gliomas. Cancer 100(12):2622–2626. https://doi.org/10.1002/cncr.20297
doi: 10.1002/cncr.20297 pubmed: 15197805
Duffau H, Lopes M, Denvil D, Capelle L (2001) Delayed onset of the supplementary motor area syndrome after surgical resection of the mesial frontal lobe: a time course study using intraoperative mapping in an awake patient. Stereotact Funct Neurosurg 76(2):74–82. https://doi.org/10.1159/000056496
doi: 10.1159/000056496 pubmed: 12007269
Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP et al (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125(Pt 1):199–214. https://doi.org/10.1093/brain/awf016
doi: 10.1093/brain/awf016 pubmed: 11834604
Endo Y, Saito Y, Otsuki T, Takahashi A, Nakata Y, Okada K et al (2014) Persistent verbal and behavioral deficits after resection of the left supplementary motor area in epilepsy surgery. Brain Develop 36(1):74–79. https://doi.org/10.1016/j.braindev.2013.01.002
doi: 10.1016/j.braindev.2013.01.002
Filevich E, Kuhn S, Haggard P (2012) Negative motor phenomena in cortical stimulation: implications for inhibitory control of human action. Cortex 48(10):1251–1261. https://doi.org/10.1016/j.cortex.2012.04.014
doi: 10.1016/j.cortex.2012.04.014 pubmed: 22658707
Florman JE, Duffau H, Rughani AI (2013) Lower motor neuron findings after upper motor neuron injury: insights from postoperative supplementary motor area syndrome. Front Hum Neurosci 7:85. https://doi.org/10.3389/fnhum.2013.00085
doi: 10.3389/fnhum.2013.00085 pubmed: 23508473 pmcid: 3600571
Fontaine D, Capelle L, Duffau H (2002) Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery 50(2):297–303; discussion -5. https://doi.org/10.1097/00006123-200202000-00011
Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS et al (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11(11):3656–3666
doi: 10.1523/JNEUROSCI.11-11-03656.1991 pubmed: 1941101 pmcid: 6575551
Frigeri T, Paglioli E, de Oliveira E, Rhoton AL Jr (2015) Microsurgical anatomy of the central lobe. J Neurosurg 122(3):483–498. https://doi.org/10.3171/2014.11.JNS14315
doi: 10.3171/2014.11.JNS14315 pubmed: 25555079
Fujii M, Maesawa S, Motomura K, Futamura M, Hayashi Y, Koba I et al (2015) Intraoperative subcortical mapping of a language-associated deep frontal tract connecting the superior frontal gyrus to Broca’s area in the dominant hemisphere of patients with glioma. J Neurosurg 122(6):1390–1396. https://doi.org/10.3171/2014.10.JNS14945
doi: 10.3171/2014.10.JNS14945 pubmed: 25816090
Ibe Y, Tosaka M, Horiguchi K, Sugawara K, Miyagishima T, Hirato M et al (2016) Resection extent of the supplementary motor area and post-operative neurological deficits in glioma surgery. Br J Neurosurg 30(3):323–329. https://doi.org/10.3109/02688697.2015.1133803
doi: 10.3109/02688697.2015.1133803 pubmed: 26760482
Jenabi M, Peck KK, Young RJ, Brennan N, Holodny AI (2014) Probabilistic fiber tracking of the language and motor white matter pathways of the supplementary motor area (SMA) in patients with brain tumors. J Neuroradiol 41(5):342–349. https://doi.org/10.1016/j.neurad.2013.12.001
doi: 10.1016/j.neurad.2013.12.001 pubmed: 24380641
Kasasbeh AS, Yarbrough CK, Limbrick DD, Steger-May K, Leach JL, Mangano FT et al (2012) Characterization of the supplementary motor area syndrome and seizure outcome after medial frontal lobe resections in pediatric epilepsy surgery. Neurosurgery 70(5):1152–1168; discussion 68. https://doi.org/10.1227/NEU.0b013e31823f6001
Kemerdere R, de Champfleur NM, Deverdun J, Cochereau J, Moritz-Gasser S, Herbet G et al (2016) Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study. J Neurol 263(1):157–167. https://doi.org/10.1007/s00415-015-7949-3
doi: 10.1007/s00415-015-7949-3 pubmed: 26559819
Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST et al (2010) Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 49(3):2375–2386. https://doi.org/10.1016/j.neuroimage.2009.10.016
doi: 10.1016/j.neuroimage.2009.10.016 pubmed: 19837176
Kim YH, Kim CH, Kim JS, Lee SK, Han JH, Kim CY et al (2013) Risk factor analysis of the development of new neurological deficits following supplementary motor area resection. J Neurosurg 119(1):7–14. https://doi.org/10.3171/2013.3.JNS121492
doi: 10.3171/2013.3.JNS121492 pubmed: 23641824
Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H (2015) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220(6):3399–3412. https://doi.org/10.1007/s00429-014-0863-0
doi: 10.1007/s00429-014-0863-0 pubmed: 25086832
Krainik A, Lehericy S, Duffau H, Vlaicu M, Poupon F, Capelle L et al (2001) Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology 57(5):871–878. https://doi.org/10.1212/wnl.57.5.871
doi: 10.1212/wnl.57.5.871 pubmed: 11552019
Krainik A, Lehericy S, Duffau H, Capelle L, Chainay H, Cornu P et al (2003) Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology 60(4):587–594. https://doi.org/10.1212/01.wnl.0000048206.07837.59
doi: 10.1212/01.wnl.0000048206.07837.59 pubmed: 12601097
Krainik A, Duffau H, Capelle L, Cornu P, Boch AL, Mangin JF et al (2004) Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 62(8):1323–1332. https://doi.org/10.1212/01.wnl.0000120547.83482.b1
doi: 10.1212/01.wnl.0000120547.83482.b1 pubmed: 15111669
Laplane D, Talairach J, Meininger V, Bancaud J, Orgogozo JM (1977) Clinical consequences of corticectomies involving the supplementary motor area in man. J Neurol Sci 34(3):301–314. https://doi.org/10.1016/0022-510x(77)90148-4
doi: 10.1016/0022-510x(77)90148-4 pubmed: 591992
Lim SH, Dinner DS, Pillay PK, Luders H, Morris HH, Klem G et al (1994) Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroencephalogr Clin Neurophysiol 91(3):179–193. https://doi.org/10.1016/0013-4694(94)90068-x
doi: 10.1016/0013-4694(94)90068-x pubmed: 7522147
Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex (New York, NY : 1991) 12(3):281–296. https://doi.org/10.1093/cercor/12.3.281
doi: 10.1093/cercor/12.3.281
Mayer AR, Zimbelman JL, Watanabe Y, Rao SM (2001) Somatotopic organization of the medial wall of the cerebral hemispheres: a 3 Tesla fMRI study. NeuroReport 12(17):3811–3814. https://doi.org/10.1097/00001756-200112040-00042
doi: 10.1097/00001756-200112040-00042 pubmed: 11726800
Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31(4):1453–1474. https://doi.org/10.1016/j.neuroimage.2006.02.004
doi: 10.1016/j.neuroimage.2006.02.004 pubmed: 16571375
Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869. https://doi.org/10.1038/nrn2478
doi: 10.1038/nrn2478 pubmed: 18843271
Nakajima R, Kinoshita M, Yahata T, Nakada M (2019) Recovery time from supplementary motor area syndrome: relationship to postoperative day 7 paralysis and damage of the cingulum. J Neurosurg 1–10. https://doi.org/10.3171/2018.10.JNS182391
Oda K, Yamaguchi F, Enomoto H, Higuchi T, Morita A (2018) Prediction of recovery from supplementary motor area syndrome after brain tumor surgery: preoperative diffusion tensor tractography analysis and postoperative neurological clinical course. Neurosurg Focus 44(6):E3. https://doi.org/10.3171/2017.12.FOCUS17564
doi: 10.3171/2017.12.FOCUS17564 pubmed: 29852764
Otten ML, Mikell CB, Youngerman BE, Liston C, Sisti MB, Bruce JN et al (2012) Motor deficits correlate with resting state motor network connectivity in patients with brain tumours. Brain 135(Pt 4):1017–1026. https://doi.org/10.1093/brain/aws041
doi: 10.1093/brain/aws041 pubmed: 22408270 pmcid: 3326259
Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ (Clin Res Ed) 372:n160. https://doi.org/10.1136/bmj.n160
doi: 10.1136/bmj.n160
Quirarte JA, Kumar VA, Liu HL, Noll KR, Wefel JS, Lang FF (2020) Language supplementary motor area syndrome correlated with dynamic changes in perioperative task-based functional MRI activations: case report. J Neurosurg 1–5. https://doi.org/10.3171/2020.4.JNS193250
Rech F, Herbet G, Gaudeau Y, Mezieres S, Moureau JM, Moritz-Gasser S et al (2019) A probabilistic map of negative motor areas of the upper limb and face: a brain stimulation study. Brain 142(4):952–965. https://doi.org/10.1093/brain/awz021
doi: 10.1093/brain/awz021 pubmed: 30753319 pmcid: 6439333
Ropper AH, Samuels MA, Klein JP (2014) Disorders of motility. In: Adams and Victor’s principles of neurology, 10th edn. McGraw-Hill Education, New York, pp 43–44
Rosenberg K, Nossek E, Liebling R, Fried I, Shapira-Lichter I, Hendler T et al (2010) Prediction of neurological deficits and recovery after surgery in the supplementary motor area: a prospective study in 26 patients. J Neurosurg 113(6):1152–1163. https://doi.org/10.3171/2010.6.JNS1090
doi: 10.3171/2010.6.JNS1090 pubmed: 20635854
Russell SM, Kelly PJ (2003) Incidence and clinical evolution of postoperative deficits after volumetric stereotactic resection of glial neoplasms involving the supplementary motor area. Neurosurgery 52(3):506–516; discussiom 15–6. https://doi.org/10.1227/01.neu.0000047670.56996.53
Sailor J, Meyerand ME, Moritz CH, Fine J, Nelson L, Badie B et al (2003) Supplementary motor area activation in patients with frontal lobe tumors and arteriovenous malformations. AJNR Am J Neuroradiol 24(9):1837–1842
pubmed: 14561613 pmcid: 7976279
Samuel N, Hanak B, Ku J, Moghaddamjou A, Mathieu F, Moharir M et al (2020) Postoperative isolated lower extremity supplementary motor area syndrome: case report and review of the literature. Child’s Nerv Syst 36(1):189–195. https://doi.org/10.1007/s00381-019-04362-2
doi: 10.1007/s00381-019-04362-2
Shima K, Tanji J (1998) Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J Neurophysiol 80(6):3247–3260. https://doi.org/10.1152/jn.1998.80.6.3247
doi: 10.1152/jn.1998.80.6.3247 pubmed: 9862919
Sjoberg RL (2021) Free will and neurosurgical resections of the supplementary motor area: a critical review. Acta Neurochir. https://doi.org/10.1007/s00701-021-04748-9
doi: 10.1007/s00701-021-04748-9 pubmed: 33566193
Sughrue ME (2019) White matter anatomy of the cerebrum. In: The glioma book, 1st edn. Thieme, New York, pp 45–73
Talairach J, Bancaud J (1966) The supplementary motor area in man. (Anatomofunctional findings by stereo-electroencephalography in epilepsy). Int J Neurol 5:330–347
Tate MC, Kim CY, Chang EF, Polley MY, Berger MS (2011) Assessment of morbidity following resection of cingulate gyrus gliomas. Clinical article. J Neurosurg 114(3):640–647. https://doi.org/10.3171/2010.9.JNS10709
doi: 10.3171/2010.9.JNS10709 pubmed: 20932098
Toma K, Honda M, Hanakawa T, Okada T, Fukuyama H, Ikeda A et al (1999) Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci 19(9):3527–3534
doi: 10.1523/JNEUROSCI.19-09-03527.1999 pubmed: 10212312 pmcid: 6782247
Vassal F, Boutet C, Lemaire JJ, Nuti C (2014) New insights into the functional significance of the frontal aslant tract: an anatomo-functional study using intraoperative electrical stimulations combined with diffusion tensor imaging-based fiber tracking. Br J Neurosurg 28(5):685–687. https://doi.org/10.3109/02688697.2014.889810
doi: 10.3109/02688697.2014.889810 pubmed: 24552256
Vassal M, Charroud C, Deverdun J, Le Bars E, Molino F, Bonnetblanc F et al (2017) Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area. J Neurosurg 126(4):1181–1190. https://doi.org/10.3171/2016.4.JNS152484
doi: 10.3171/2016.4.JNS152484 pubmed: 27315027
Vergani F, Lacerda L, Martino J, Attems J, Morris C, Mitchell P et al (2014) White matter connections of the supplementary motor area in humans. J Neurol Neurosurg Psychiatry 85(12):1377–1385. https://doi.org/10.1136/jnnp-2013-307492
doi: 10.1136/jnnp-2013-307492 pubmed: 24741063
Vorobiev V, Govoni P, Rizzolatti G, Matelli M, Luppino G (1998) Parcellation of human mesial area 6: cytoarchitectonic evidence for three separate areas. Eur J Neurosci 10(6):2199–2203. https://doi.org/10.1046/j.1460-9568.1998.00236.x
doi: 10.1046/j.1460-9568.1998.00236.x pubmed: 9753106
Young JS, Morshed RA, Mansoori Z, Cha S, Berger MS (2020) Disruption of frontal aslant tract is not associated with long-term postoperative language deficits. World Neurosurg 133:192–195. https://doi.org/10.1016/j.wneu.2019.09.128
doi: 10.1016/j.wneu.2019.09.128 pubmed: 31574328
Zentner J, Hufnagel A, Pechstein U, Wolf HK, Schramm J (1996) Functional results after resective procedures involving the supplementary motor area. J Neurosurg 85(4):542–549. https://doi.org/10.3171/jns.1996.85.4.0542
doi: 10.3171/jns.1996.85.4.0542 pubmed: 8814153
Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qu M et al (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Adv Neurol 70:29–43
pubmed: 8615210

Auteurs

Harry Pinson (H)

Department of Neurosurgery, AZ Delta, Roeselare, Belgium. harry.pinson@ugent.be.
Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium. harry.pinson@ugent.be.

Jeroen Van Lerbeirghe (J)

Department of Neurosurgery, AZ Delta, Roeselare, Belgium.

Dimitri Vanhauwaert (D)

Department of Neurosurgery, AZ Delta, Roeselare, Belgium.

Olivier Van Damme (O)

Department of Neurosurgery, AZ Delta, Roeselare, Belgium.

Giorgio Hallaert (G)

Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.

Jean-Pierre Kalala (JP)

Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH