Comparison of thoracic ultrasonography and thoracic radiography to detect active infectious bronchopneumonia in hospitalized dairy calves.


Journal

Journal of veterinary internal medicine
ISSN: 1939-1676
Titre abrégé: J Vet Intern Med
Pays: United States
ID NLM: 8708660

Informations de publication

Date de publication:
Jul 2021
Historique:
revised: 30 04 2021
received: 02 11 2020
accepted: 30 04 2021
pubmed: 17 5 2021
medline: 24 7 2021
entrez: 16 5 2021
Statut: ppublish

Résumé

The best test between thoracic ultrasonography (TUS) and thoracic radiography (TR) or the best combination of tests (series or parallel) to detect active infectious bronchopneumonia (BP) in hospitalized dairy calves remains unknown. To estimate performances of TUS and TR to detect active BP in hospitalized dairy calves and to determine the best strategy for using these tests based on a panel diagnosis method (PDM). Performances of TUS and TR were hypothesized to be equivalent. Fifty hospitalized dairy calves (≥7 days old; ≤100 kg; standing; pCO Each calf prospectively and sequentially underwent physical examination, thoracic auscultation, blood analyses, and TUS and TR. Three blinded experts determined whether active BP was present/absent based on PDM. Krippendorff's alpha measured interexpert agreement. The sensitivities (Se) and specificities (Sp) of TUS and TR alone and in series or parallel were compared (McNemar's test; P < .05). Interexpert agreement was moderate at 0.58 (95%CI: 0.42; 0.73). The Se and Sp of TUS were 0.84 (95%CI: 0.60; 0.97) and 0.74 (95%CI: 0.57; 0.86), respectively. The Se and Sp of TR were 0.89 (95%CI: 0.67; 0.99) and 0.58 (95%CI: 0.39; 0.75), respectively. No significant difference was found in the Se and Sp of TUS and TR when analyzed alone, in series or in parallel. Thoracic ultrasonography or TR alone equally detected active BP in hospitalized dairy calves. Series or parallel analysis provided no additional benefit. Its ease of use and widespread accessibility support using TUS as a first-line test to detect active BP in hospitalized dairy calves.

Sections du résumé

BACKGROUND BACKGROUND
The best test between thoracic ultrasonography (TUS) and thoracic radiography (TR) or the best combination of tests (series or parallel) to detect active infectious bronchopneumonia (BP) in hospitalized dairy calves remains unknown.
HYPOTHESIS/OBJECTIVES OBJECTIVE
To estimate performances of TUS and TR to detect active BP in hospitalized dairy calves and to determine the best strategy for using these tests based on a panel diagnosis method (PDM). Performances of TUS and TR were hypothesized to be equivalent.
ANIMALS METHODS
Fifty hospitalized dairy calves (≥7 days old; ≤100 kg; standing; pCO
METHODS METHODS
Each calf prospectively and sequentially underwent physical examination, thoracic auscultation, blood analyses, and TUS and TR. Three blinded experts determined whether active BP was present/absent based on PDM. Krippendorff's alpha measured interexpert agreement. The sensitivities (Se) and specificities (Sp) of TUS and TR alone and in series or parallel were compared (McNemar's test; P < .05).
RESULTS RESULTS
Interexpert agreement was moderate at 0.58 (95%CI: 0.42; 0.73). The Se and Sp of TUS were 0.84 (95%CI: 0.60; 0.97) and 0.74 (95%CI: 0.57; 0.86), respectively. The Se and Sp of TR were 0.89 (95%CI: 0.67; 0.99) and 0.58 (95%CI: 0.39; 0.75), respectively. No significant difference was found in the Se and Sp of TUS and TR when analyzed alone, in series or in parallel.
CONCLUSION CONCLUSIONS
Thoracic ultrasonography or TR alone equally detected active BP in hospitalized dairy calves. Series or parallel analysis provided no additional benefit. Its ease of use and widespread accessibility support using TUS as a first-line test to detect active BP in hospitalized dairy calves.

Identifiants

pubmed: 33993530
doi: 10.1111/jvim.16157
pmc: PMC8295710
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2058-2068

Subventions

Organisme : Zoetis

Informations de copyright

© 2021 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals LLC on behalf of American College of Veterinary Internal Medicine.

Références

J Vet Med B Infect Dis Vet Public Health. 2000 Apr;47(3):229-34
pubmed: 10829578
J Clin Epidemiol. 2009 Aug;62(8):797-806
pubmed: 19447581
Vet Clin North Am Food Anim Pract. 2020 Jul;36(2):399-423
pubmed: 32451033
Arch Pathol Lab Med. 2013 Apr;137(4):558-65
pubmed: 23544945
J Dairy Sci. 2017 Apr;100(4):2985-2991
pubmed: 28215891
J Vet Intern Med. 2021 Jul;35(4):2058-2068
pubmed: 33993530
J Dairy Sci. 2019 Aug;102(8):7329-7344
pubmed: 31202651
Prev Vet Med. 2015 May 1;119(3-4):227-31
pubmed: 25794838
Prev Vet Med. 2014 Feb 1;113(2):231-40
pubmed: 24269039
Vet Rec. 2019 Jul 27;185(4):109
pubmed: 31320546
Front Vet Sci. 2017 Jul 06;4:101
pubmed: 28730151
BMC Med Res Methodol. 2016 Aug 05;16:93
pubmed: 27495131
Vet Clin North Am Food Anim Pract. 2016 Mar;32(1):19-35
pubmed: 26922110
Prev Vet Med. 2020 Nov;184:105153
pubmed: 32992242
Vet Rec. 1997 Jul 5;141(1):12-7
pubmed: 9248017
J Vet Diagn Invest. 2016 Mar;28(2):119-28
pubmed: 26796957
J Dairy Sci. 2013 Jul;96(7):4523-8
pubmed: 23628251
Vet Clin North Am Food Anim Pract. 1999 Jul;15(2):301-58, vi-vii
pubmed: 10442390
Vet Rec. 1998 Oct 24;143(17):468-71
pubmed: 9829303
Vet Clin North Am Food Anim Pract. 2009 Mar;25(1):179-93, vii
pubmed: 19174288
Vet Clin North Am Food Anim Pract. 2016 Mar;32(1):1-18
pubmed: 26922109
Vet Rec. 2002 Jan 26;150(4):109-14
pubmed: 11838994
J Am Vet Med Assoc. 2018 Jun 1;252(11):1362-1366
pubmed: 29772968
Vet Radiol Ultrasound. 2004 Jul-Aug;45(4):331-5
pubmed: 15373260
Vet Clin North Am Food Anim Pract. 2009 Nov;25(3):633-49, Table of Contents
pubmed: 19825437
Biometrics. 1977 Jun;33(2):363-74
pubmed: 884196
J Clin Epidemiol. 2019 Aug;112:20-27
pubmed: 30930247
J Vet Intern Med. 2016 Jul;30(4):1396-401
pubmed: 27305277
J Dairy Sci. 2018 Jun;101(6):5404-5410
pubmed: 29525311
PeerJ. 2015 Nov 10;3:e1374
pubmed: 26587343
J Vet Intern Med. 2014 Jan-Feb;28(1):234-42
pubmed: 24236441
Acta Paediatr. 2008 Jan;97(1):46-50
pubmed: 18076723
J Vet Intern Med. 2015 Nov-Dec;29(6):1728-34
pubmed: 26332345
Prev Vet Med. 2019 Jan 1;162:38-45
pubmed: 30621897
J Am Vet Med Assoc. 1991 Jun 15;198(12):2112-8
pubmed: 1885315
Health Technol Assess. 2007 Dec;11(50):iii, ix-51
pubmed: 18021577

Auteurs

Julie Berman (J)

Département des sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.

Isabelle Masseau (I)

Département des sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.

Gilles Fecteau (G)

Département des sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.

Sébastien Buczinski (S)

Département des sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.

David Francoz (D)

Département des sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH