Effects of APOE ε2 on the Fractional Amplitude of Low-Frequency Fluctuation in Mild Cognitive Impairment: A Study Based on the Resting-State Functional MRI.
APOE
Alzheimer’s disease
fractional amplitude of low-frequency fluctuation
mild cognitive impairment
resting-state functional MRI
Journal
Frontiers in aging neuroscience
ISSN: 1663-4365
Titre abrégé: Front Aging Neurosci
Pays: Switzerland
ID NLM: 101525824
Informations de publication
Date de publication:
2021
2021
Historique:
received:
04
08
2020
accepted:
10
03
2021
entrez:
17
5
2021
pubmed:
18
5
2021
medline:
18
5
2021
Statut:
epublish
Résumé
Apolipoprotein E (APOE) ε2 is a protective genetic factor for Alzheimer's disease (AD). However, the potential interaction effects between the APOE ε2 allele and disease status on the intrinsic brain activity remain elusive. We identified 73 healthy control (HC) with APOE ε3/ε3, 61 mild cognitive impairment (MCI) subjects with APOE ε3/ε3, 24 HC with APOE ε2/ε3, and 10 MCI subjects with APOE ε2/ε3 from the ADNI database. All subjects underwent a resting-state functional MRI and Fluoro-deoxy-glucose positron emission tomography (FDG-PET). We used a fractional amplitude of low-frequency fluctuation (fALFF) to explore the spontaneous brain activity. Based on the mixed-effects analysis, we explored the interaction effects between the APOE ε2 allele versus disease status on brain activity and metabolism in a voxel-wise fashion (GRF corrected, There are no significant differences in gender, age, or education among the four groups. The interaction effect on brain activity was located in the inferior parietal lobule (IPL). APOE ε2 carriers might have a better brain reservation when coping with AD-related pathologies.
Sections du résumé
BACKGROUND
BACKGROUND
Apolipoprotein E (APOE) ε2 is a protective genetic factor for Alzheimer's disease (AD). However, the potential interaction effects between the APOE ε2 allele and disease status on the intrinsic brain activity remain elusive.
METHODS
METHODS
We identified 73 healthy control (HC) with APOE ε3/ε3, 61 mild cognitive impairment (MCI) subjects with APOE ε3/ε3, 24 HC with APOE ε2/ε3, and 10 MCI subjects with APOE ε2/ε3 from the ADNI database. All subjects underwent a resting-state functional MRI and Fluoro-deoxy-glucose positron emission tomography (FDG-PET). We used a fractional amplitude of low-frequency fluctuation (fALFF) to explore the spontaneous brain activity. Based on the mixed-effects analysis, we explored the interaction effects between the APOE ε2 allele versus disease status on brain activity and metabolism in a voxel-wise fashion (GRF corrected,
RESULTS
RESULTS
There are no significant differences in gender, age, or education among the four groups. The interaction effect on brain activity was located in the inferior parietal lobule (IPL).
CONCLUSION
CONCLUSIONS
APOE ε2 carriers might have a better brain reservation when coping with AD-related pathologies.
Identifiants
pubmed: 33994988
doi: 10.3389/fnagi.2021.591347
pmc: PMC8117101
doi:
Types de publication
Journal Article
Langues
eng
Pagination
591347Informations de copyright
Copyright © 2021 Liu, Zeng, Luo, Li, Hong, Wang, Guan, Wu, Zhang, Zhang, Li, Fu, Wang, Wang, Xu, Huang and Zhang.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Neurochem. 2021 Feb 14;:
pubmed: 33583024
Brain Imaging Behav. 2020 Jun;14(3):787-796
pubmed: 30511118
Neuron. 2007 Sep 6;55(5):697-711
pubmed: 17785178
Neurosci Lett. 1996 Feb 9;204(3):177-80
pubmed: 8938259
J Alzheimers Dis. 2021;80(1):321-330
pubmed: 33523005
Nat Rev Neurosci. 2016 Dec;17(12):777-792
pubmed: 27829687
Neurosci Lett. 2009 Feb 6;450(3):336-9
pubmed: 19010392
Nat Commun. 2020 Sep 18;11(1):4727
pubmed: 32948752
Oncotarget. 2016 Sep 13;7(37):58789-58801
pubmed: 27542235
Alzheimers Dement. 2010 May;6(3):265-73
pubmed: 20451875
Bioessays. 2015 Jun;37(6):624-32
pubmed: 25773221
Alzheimers Dement. 2018 Apr;14(4):535-562
pubmed: 29653606
Lancet Neurol. 2012 Nov;11(11):1006-12
pubmed: 23079557
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18265-9
pubmed: 17991778
Brain Imaging Behav. 2017 Oct;11(5):1459-1469
pubmed: 27734308
Acta Neuropathol. 1991;82(4):239-59
pubmed: 1759558
JAMA. 1997 Oct 22-29;278(16):1349-56
pubmed: 9343467
Neuroinformatics. 2016 Jul;14(3):339-51
pubmed: 27075850
J Alzheimers Dis. 2010;21(2):403-9
pubmed: 20555142
Neurology. 2009 Mar 3;72(9):829-34
pubmed: 19255410
J Neurosci Methods. 2008 Jul 15;172(1):137-41
pubmed: 18501969
Alzheimers Dement. 2011 May;7(3):270-9
pubmed: 21514249
Neuroimage. 2007 Apr 1;35(2):488-500
pubmed: 17254803
J Neurosci. 2007 Feb 28;27(9):2349-56
pubmed: 17329432
Brain Imaging Behav. 2016 Dec;10(4):970-983
pubmed: 26409470
Brain Imaging Behav. 2012 Dec;6(4):502-16
pubmed: 22782295
Arch Neurol. 2004 Jan;61(1):59-66
pubmed: 14732621
Front Neurol. 2019 May 27;10:552
pubmed: 31191441
Neurology. 2017 Feb 7;88(6):569-576
pubmed: 28062720
J Neurosci. 2003 Feb 1;23(3):986-93
pubmed: 12574428
Science. 1993 Aug 13;261(5123):921-3
pubmed: 8346443
J Lipid Res. 2009 Apr;50 Suppl:S183-8
pubmed: 19106071
Nat Rev Neurol. 2013 Feb;9(2):106-18
pubmed: 23296339
Front Aging Neurosci. 2017 Jul 07;9:215
pubmed: 28736521
J Nucl Med. 2005 Oct;46(10):1625-32
pubmed: 16204712
Hippocampus. 2013 Jan;23(1):1-6
pubmed: 22815064
Neuroimage. 2011 Mar 1;55(1):287-95
pubmed: 21118724
J Neurosci. 2011 Dec 14;31(50):18578-89
pubmed: 22171056
J Cereb Blood Flow Metab. 1992 Jul;12(4):571-83
pubmed: 1618936
Front Neurol. 2019 May 29;10:566
pubmed: 31191447
Curr Opin Neurobiol. 2005 Dec;15(6):632-7
pubmed: 16271461
Brain Imaging Behav. 2012 Dec;6(4):517-27
pubmed: 22644789
Neurology. 2008 Feb 12;70(7):512-20
pubmed: 17898323
Nat Neurosci. 2011 Jun;14(6):750-6
pubmed: 21532579
Nihon Ika Daigaku Zasshi. 1987 Jun;54(3):245-50
pubmed: 3497167
Nat Genet. 1994 Jun;7(2):180-4
pubmed: 7920638
J Clin Psychiatry. 2007 Apr;68(4):613-8
pubmed: 17474819
Ann Neurol. 2015 Jun;77(6):917-29
pubmed: 25623662
Neurology. 2004 Jun 8;62(11):1977-83
pubmed: 15184600
Neurology. 1997 Feb;48(2):515-9
pubmed: 9040748
Brain Cogn. 1996 Dec;32(3):365-83
pubmed: 8975677
Epilepsia. 2016 Sep;57(9):1475-84
pubmed: 27374869
J Nucl Med. 1998 May;39(5):904-11
pubmed: 9591599
Schizophr Res. 2010 Mar;117(1):13-20
pubmed: 19854028
Neuron. 2008 Jun 12;58(5):681-93
pubmed: 18549781
Nature. 2001 Jul 12;412(6843):150-7
pubmed: 11449264
Biol Psychiatry. 2015 Dec 1;78(11):794-804
pubmed: 25847180
Nat Genet. 1996 Sep;14(1):55-61
pubmed: 8782820
Transl Psychiatry. 2021 Jan 27;11(1):78
pubmed: 33504764
CNS Spectr. 2008 Jan;13(1):45-53
pubmed: 18204414
Neuroreport. 2002 Dec 20;13(18):2487-92
pubmed: 12499854
Front Neurosci. 2018 Dec 20;12:975
pubmed: 30618593
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5
pubmed: 17670949
Curr Opin Neurobiol. 2009 Dec;19(6):666-71
pubmed: 19880311
Arch Neurol. 2006 Jan;63(1):38-46
pubmed: 16401735
Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2878-86
pubmed: 24183852
Proc Natl Acad Sci U S A. 2000 May 23;97(11):6037-42
pubmed: 10811879
Brain Connect. 2016 Apr;6(3):208-15
pubmed: 26537783