pH-Driven Reversible Assembly and Disassembly of Colloidal Gold Nanoparticles.
3-aminopropyltriethoxysilane
gold nanoparticles
pH-responsive
plasmonic
reversible self-assembly
Journal
Frontiers in chemistry
ISSN: 2296-2646
Titre abrégé: Front Chem
Pays: Switzerland
ID NLM: 101627988
Informations de publication
Date de publication:
2021
2021
Historique:
received:
03
03
2021
accepted:
09
03
2021
entrez:
17
5
2021
pubmed:
18
5
2021
medline:
18
5
2021
Statut:
epublish
Résumé
Owing to the localized surface plasmon resonance (LSPR), dynamic manipulation of optical properties through the structure evolution of plasmonic nanoparticles has been intensively studied for practical applications. This paper describes a novel method for direct reversible self-assembly and dis-assembly of Au nanoparticles (AuNPs) in water driven by pH stimuli. Using 3-aminopropyltriethoxysilane (APTES) as the capping ligand and pH-responsive agent, the APTES hydrolyzes rapidly in response to acid and then condenses into silicon. On the contrary, the condensed silicon can be broken down into silicate by base, which subsequently deprotonates the APTES on AuNPs. By controlling condensation and decomposition of APTES, the plasmonic coupling among adjacent AuNPs could be reversible tuned to display the plasmonic color switching. This study provides a facile and distinctive strategy to regulate the reversible self-assembly of AuNPs, and it also offers a new avenue for other plasmonic nanoparticles to adjust plasmonic properties
Identifiants
pubmed: 33996769
doi: 10.3389/fchem.2021.675491
pmc: PMC8116534
doi:
Types de publication
Journal Article
Langues
eng
Pagination
675491Informations de copyright
Copyright © 2021 Liu, Fu, Xu, Zhang, Sun, Du, Kang, Xiao, Zhou, Gong and Zhang.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Chem Soc Rev. 2019 Mar 4;48(5):1342-1361
pubmed: 30688963
Angew Chem Int Ed Engl. 2016 Jul 18;55(30):8610-4
pubmed: 27253138
Science. 2016 Jun 24;352(6293):1565-9
pubmed: 27339985
Angew Chem Int Ed Engl. 2019 Nov 4;58(45):16307-16313
pubmed: 31498926
Adv Mater. 2019 May;31(19):e1900789
pubmed: 30924976
Nano Lett. 2008 Sep;8(9):2867-71
pubmed: 18698725
Adv Mater. 2021 Jan;33(3):e2006532
pubmed: 33283355
Nano Lett. 2018 Aug 8;18(8):5312-5318
pubmed: 30005162
J Am Chem Soc. 2014 May 21;136(20):7474-9
pubmed: 24821567
Angew Chem Int Ed Engl. 2012 Jun 25;51(26):6373-7
pubmed: 22623318
Angew Chem Int Ed Engl. 2016 Jan 18;55(3):936-40
pubmed: 26636666
Nanoscale. 2016 Sep 21;8(35):15864-9
pubmed: 27546585
Angew Chem Int Ed Engl. 2016 Sep 5;55(37):11064-8
pubmed: 27513299
Adv Mater. 2019 Apr;31(15):e1807061
pubmed: 30773717
Nano Lett. 2020 Nov 11;20(11):8242-8249
pubmed: 33054229
Nanoscale. 2016 Feb 21;8(7):3923-5
pubmed: 26832424
ACS Nano. 2020 Nov 24;:
pubmed: 33232119