Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
21
10
2020
accepted:
26
03
2021
pubmed:
19
5
2021
medline:
19
5
2021
entrez:
18
5
2021
Statut:
ppublish
Résumé
The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 10
Identifiants
pubmed: 34002091
doi: 10.1038/s41586-021-03498-z
pii: 10.1038/s41586-021-03498-z
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
33-36Commentaires et corrections
Type : CommentIn
Références
Aloisio, R., Coccia, E. & Vissani, F. (eds) Multiple Messengers and Challenges in Astroparticle Physics (Springer, 2018).
HESS Collaboration. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 531, 476–479 (2016).
doi: 10.1038/nature17147
Amenomori, M. et al. First detection of photons with energy beyond 100 TeV from an astrophysical source. Phys. Rev. Lett. 123, 051101 (2019).
pubmed: 31491288
doi: 10.1103/PhysRevLett.123.051101
Abeysekara, A. U. et al. Multiple Galactic sources with emission above 56 TeV detected by HAWC. Phys. Rev. Lett. 124, 021102 (2020).
pubmed: 32004015
doi: 10.1103/PhysRevLett.124.021102
Abeysekara, A. U. et al. HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon. Nat. Astron. https://doi.org/10.1038/s41550-021-01318-y (2021).
Amenomori, M. et al. Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays. Nat. Astron. https://doi.org/10.1038/s41550-020-01294-9 (2021).
Cao, Z. A future project at Tibet: the large high altitude air shower observatory (LHAASO). Chin. Phys C 34, 249–252 (2010).
doi: 10.1088/1674-1137/34/2/018
Aharonian, F. et al. Observation of the Crab Nebula with LHAASO-KM2A – a performance study. Chin. Phys C 45, 025002 (2021).
doi: 10.1088/1674-1137/abd01b
Aharonian, F. A. Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe (World Scientific, 2004).
Liu, R.-Y. & Yan, H. On the unusually large spatial extent of the TeV nebula HESS J1825–137: implication from the energy-dependent morphology. Mon. Not. R. Astron. Soc. 494, 2618–2627 (2020).
doi: 10.1093/mnras/staa911
Giacinti, G., et al. Halo fraction in TeV-bright pulsar wind nebulae. Astron. Astrophys. 636, A113 (2020).
doi: 10.1051/0004-6361/201936505
Abeysekara, A. U. et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 358, 911–914 (2017).
pubmed: 29146808
doi: 10.1126/science.aan4880
Linden, T. et al. Using HAWC to discover invisible pulsars. Phys. Rev. D 96, 103016 (2017).
doi: 10.1103/PhysRevD.96.103016
Sudoh, T., Linden, T. & Beacom, J. F. TeV halos are everywhere: prospects for new discoveries. Phys. Rev. D 100, 043016 (2019).
doi: 10.1103/PhysRevD.100.043016
Gabici, S. & Aharonian, F. A. Searching for Galactic cosmic-ray pevatrons with multi-TeV gamma rays and neutrinos. Astrophys. J. Lett. 665, L131–L134 (2007).
doi: 10.1086/521047
Aharonian, F. A. & Atoyan, A. M. On the emissivity of π
Cesarsky, C. J. & Montmerle, T. Gamma-rays from active regions in the Galaxy – the possible contribution of stellar winds. Space Sci. Rev. 36, 173–193 (1983).
doi: 10.1007/BF00167503
Bykov, A. M. et al. High-energy particles and radiation in star-forming regions. Space Sci. Rev. 216, 42 (2020).
doi: 10.1007/s11214-020-00663-0
Aharonian, F., Yang, R. & de Oña Wilhelmi, E. Massive stars as major factories of Galactic cosmic rays. Nat. Astron. 3, 561–567 (2019).
doi: 10.1038/s41550-019-0724-0
Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716C723 (1974)
doi: 10.1109/TAC.1974.1100705
He, H. Design of the LHAASO detectors. Rad. Det. Technol. Meth. 2, 7 (2018).
doi: 10.1007/s41605-018-0037-3
Fleysher, R., Fleysher, L., Nemethy, P. & Mincer, A. I. Tests of statistical significance and background estimation in gamma-ray air shower experiments. Astrophys. J. 603, 355–362 (2004).
doi: 10.1086/381384
Bartoli, B. et al. TeV gamma-ray survey of the northern sky using the ARGO-YBJ detector. Astrophys. J. 779, 27 (2013).
doi: 10.1088/0004-637X/779/1/27
Cronin, J. W., Gibbs, K. G. & Weekes, T. C. The search for discrete astrophysical sources of energetic gamma radiation. Annu. Rev. Nucl. Part. Sci. 43, 883–925 (1993); erratum 43, 883–937 (1993).
doi: 10.1146/annurev.ns.43.120193.004315
Aharonian, F., Buckley, J., Kifune, T. & Sinnis, G. High energy astrophysics with ground-based gamma ray detectors. Rep. Prog. Phys. 71, 096901 (2008).
doi: 10.1088/0034-4885/71/9/096901
Aharonian, F. et al. The Crab nebula and pulsar between 500 GeV and 80 TeV: observations with the HEGRA stereoscopic air Cerenkov telescopes. Astrophys. J. 614, 897–913 (2004).
doi: 10.1086/423931
MAGIC Collaboration. MAGIC very large zenith angle observations of the Crab Nebula up to 100 TeV. Astron. Astrophys. 635, A158 (2020).
doi: 10.1051/0004-6361/201936899
Gould, R. J. & Schréder, G. Opacity of the Universe to high-energy photons. Phys. Rev. Lett. 16, 252–254 (1966).
doi: 10.1103/PhysRevLett.16.252
Popescu, C. C. et al. A radiation transfer model for the Milky Way: I. Radiation fields and application to high-energy astrophysics. Mon. Not. R. Astron. Soc. 470, 2539–2558 (2017).
doi: 10.1093/mnras/stx1282
Moskalenko, I. V., Porter, T. A. & Strong, A. W. Attenuation of very high energy gamma rays by the Milky Way interstellar radiation field. Astrophys. J. Lett. 640, L155–L158 (2006).
doi: 10.1086/503524
Abdollahi, S. et al. Fermi Large Area Telescope fourth source catalog. Astrophys. J. Suppl. Ser. 247, 33 (2020).
doi: 10.3847/1538-4365/ab6bcb
Dame, T. M., Hartmann, D. & Thaddeus, P. The Milky Way in molecular clouds: a new complete CO survey. Astrophys. J. 547, 792–813 (2001).
doi: 10.1086/318388
Zirakashvili, V. N. & Aharonian, F. Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astron. Astrophys. 465, 695–702 (2007).
doi: 10.1051/0004-6361:20066494
Khangulyan, D., Aharonian, F. A. & Kelner, S. R. Simple analytical approximations for treatment of inverse Compton scattering of relativistic electrons in the blackbody radiation field. Astrophys. J. 783, 100 (2014).
doi: 10.1088/0004-637X/783/2/100
Kafexhiu, E., Aharonian, F., Taylor, A. M. & Vila, G. S. Parametrization of gamma-ray production cross sections for p p interactions in a broad proton energy range from the kinematic threshold to PeV energies. Phys. Rev. D 90, 123014 (2014).
doi: 10.1103/PhysRevD.90.123014
Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).
doi: 10.1086/428488
Shan, S. S. et al. Distances of Galactic supernova remnants using red clump stars. Astrophys. J.S 238, 35 (2018).
doi: 10.3847/1538-4365/aae07a
Acero, F. et al. Constraints on the Galactic population of TeV pulsar wind nebulae using Fermi Large Area Telescope observations. Astrophys. J. 773, 77 (2013).
doi: 10.1088/0004-637X/773/1/77
Ranasinghe, S. & Leahy, D. A. Distances to supernova remnants G20.4 + 0.1, G24.7 − 0.6, and G28.6 − 0.1 and new molecular cloud associations. Mon. Not. R. Astron. Soc. 477, 2243–2250 (2018).
doi: 10.1093/mnras/sty817
Gotthelf, E. V., Halpern, J. P., Terrier, R. & Mattana, F. Discovery of an energetic 38.5 ms pulsar powering the gamma-ray source IGR J18490-0000/HESS J1849-000. Astrophys. J. Lett. 729, L16 (2011).
doi: 10.1088/2041-8205/729/2/L16
Zhang, B. et al. The parallax of W43: a massive star-forming complex near the Galactic bar. Astrophys. J. 781, 89 (2014).
doi: 10.1088/0004-637X/781/2/89
Yang, J., Zhang, J.-L., Cai, Z.-Y., Lu, D.-R. & Tan, Y.-H. Molecular gas distribution around the supernova remnant G40.5 0.5. Chin. J. Astron. Astrophys. 6, 210–216 (2006).
doi: 10.1088/1009-9271/6/2/8
Downes, A. J. B., Pauls, T. & Salter, C. J. G 40.5-0.5: a previously unrecognised supernova remnant in Aquila. Astron. Astrophys. 92, 47–50 (1980).
Gelfand, J. D., Slane, P. O. & Temim, T. The properties of the progenitor supernova, pulsar wind, and neutron star inside PWN G54.1+0.3. Astrophys. J. 807, 30 (2015).
doi: 10.1088/0004-637X/807/1/30
Kirichenko, A. et al. Optical observations of PSR J2021+3651 in the Dragonfly nebula with the GTC. Astrophys. J. 802, 17 (2015).
doi: 10.1088/0004-637X/802/1/17
Azimlu, M. & Fich, M. Study of molecular clouds associated with H II regions. Astron. J. 141, 123 (2011).
doi: 10.1088/0004-6256/141/4/123
Paredes, J. M. et al. Radio continuum and near-infrared study of the MGRO J2019+37 region. Astron. Astrophys. 507, 241–250 (2009).
doi: 10.1051/0004-6361/200912448
Bartoli, B. et al. Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ. Astrophys. J. 760, 110 (2012).
doi: 10.1088/0004-637X/760/2/110
Chaves, R. C. G. et al. The H.E.S.S. Galactic plane survey. Astron. Astrophys. 612, A1 (2018).
doi: 10.1051/0004-6361/201732098
Rygl, K. L. J. et al. Parallaxes and proper motions of interstellar masers toward the Cygnus X star-forming complex. I. Membership of the Cygnus X region. Astron. Astrophys. 539, A79 (2012).
doi: 10.1051/0004-6361/201118211
Kothes, R., Uyaniker, B. & Pineault, S. The supernova remnant G106.3+2.7 and its pulsar-wind nebula: relics of triggered star formation in a complex environment. Astrophys. J. 560, 236–243 (2001).
doi: 10.1086/322511