Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
21 05 2021
Historique:
received: 07 04 2020
accepted: 23 03 2021
entrez: 22 5 2021
pubmed: 23 5 2021
medline: 12 6 2021
Statut: epublish

Résumé

Defective cholesterol biosynthesis in eye lens cells is often associated with cataracts; however, how genes involved in cholesterol biosynthesis are regulated in lens cells remains unclear. Here, we show that Quaking (Qki) is required for the transcriptional activation of genes involved in cholesterol biosynthesis in the eye lens. At the transcriptome level, lens-specific Qki-deficient mice present downregulation of genes associated with the cholesterol biosynthesis pathway, resulting in a significant reduction of total cholesterol level in the eye lens. Mice with Qki depletion in lens epithelium display progressive accumulation of protein aggregates, eventually leading to cataracts. Notably, these defects are attenuated by topical sterol administration. Mechanistically, we demonstrate that Qki enhances cholesterol biosynthesis by recruiting Srebp2 and Pol II in the promoter regions of cholesterol biosynthesis genes. Supporting its function as a transcription co-activator, we show that Qki directly interacts with single-stranded DNA. In conclusion, we propose that Qki-Srebp2-mediated cholesterol biosynthesis is essential for maintaining the cholesterol level that protects lens from cataract development.

Identifiants

pubmed: 34021134
doi: 10.1038/s41467-021-22782-0
pii: 10.1038/s41467-021-22782-0
pmc: PMC8139980
doi:

Substances chimiques

Gene Products, pol 0
Molecular Chaperones 0
QKI protein, human 0
Qk protein, mouse 0
RNA, Messenger 0
RNA-Binding Proteins 0
SREBF2 protein, human 0
Srebf2 protein, mouse 0
Sterol Regulatory Element Binding Protein 2 0
Cholesterol 97C5T2UQ7J

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

3005

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM130838
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA214800
Pays : United States

Références

Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31 (2000).
pubmed: 11413487 doi: 10.1038/35036052
Ikonen, E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138 (2008).
pubmed: 18216769 doi: 10.1038/nrm2336
Nohturfft, A. & Zhang, S. C. Coordination of lipid metabolism in membrane biogenesis. Ann. Rev. Cell Dev. Biol. 25, 539–566 (2009).
doi: 10.1146/annurev.cellbio.24.110707.175344
Espenshade, P. J. & Hughes, A. L. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41, 401–427 (2007).
pubmed: 17666007 doi: 10.1146/annurev.genet.41.110306.130315
Cenedella, R. J. Cholesterol and cataracts. Surv. Ophthalmol. 40, 320–337 (1996).
pubmed: 8658343 doi: 10.1016/S0039-6257(96)82007-8
Karasinska, J. M. & Hayden, M. R. Cholesterol metabolism in Huntington disease. Nat. Rev. Neurol. 7, 561 (2011).
pubmed: 21894212 doi: 10.1038/nrneurol.2011.132
Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).
pubmed: 11994399 pmcid: 150968 doi: 10.1172/JCI0215593
Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on cholesterol homeostasis: the central role of scap. Annu. Rev. Biochem. 87, 783–807 (2018).
pubmed: 28841344 doi: 10.1146/annurev-biochem-062917-011852
Kim, Y.-C. et al. Liver ChIP-seq analysis in FGF19-treated mice reveals SHP as a global transcriptional partner of SREBP-2. Genome Biol. 16, 268 (2015).
pubmed: 26634251 pmcid: 4669652 doi: 10.1186/s13059-015-0835-6
Misawa, K. et al. Sterol regulatory element-binding protein-2 interacts with hepatocyte nuclear factor-4 to enhance sterol isomerase gene expression in hepatocytes. J. Biol. Chem. 278, 36176–36182 (2003).
pubmed: 12855700 doi: 10.1074/jbc.M302387200
Oliner, J. D., Andresen, J. M., Hansen, S. K., Zhou, S. & Tjian, R. SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev. 10, 2903–2911 (1996).
pubmed: 8918891 doi: 10.1101/gad.10.22.2903
Xu, D. et al. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus. Nat. Commun. 6, 8100, https://doi.org/10.1038/ncomms9100 (2015).
pubmed: 26311497 doi: 10.1038/ncomms9100
Zhang, D. et al. Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5. Proc. Natl Acad. Sci. USA 114, E5197–E5206 (2017).
pubmed: 28607088 pmcid: 5495269
Galarneau, A. & Richard, S. Target RNA motif and target mRNAs of the Quaking STAR protein. Nat. Struct. Mol. Biol. 12, 691–698 (2005).
pubmed: 16041388 doi: 10.1038/nsmb963
Borchman, D. & Yappert, M. C. Lipids and the ocular lens. J. Lipid Res. 51, 2473–2488 (2010).
pubmed: 20407021 pmcid: 2918433 doi: 10.1194/jlr.R004119
Horwitz, J., Bova, M. P., Ding, L.-L., Haley, D. A. & Stewart, P. L. Lens α-crystallin: function and structure. Eye 13, 403–408 (1999).
pubmed: 10627817 doi: 10.1038/eye.1999.114
Moreau, K. L. & King, J. A. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol. Med. 18, 273–282 (2012).
pubmed: 22520268 pmcid: 3621977 doi: 10.1016/j.molmed.2012.03.005
Makley, L. N. et al. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science 350, 674–677 (2015).
pubmed: 26542570 pmcid: 4725592 doi: 10.1126/science.aac9145
Zhao, L. et al. Lanosterol reverses protein aggregation in cataracts. Nature 523, 607–611 (2015).
pubmed: 26200341 doi: 10.1038/nature14650
Cenedella, R. J., Kuszak, J. R., Al-Ghoul, K. J., Qin, S. & Sexton, P. S. Discordant expression of the sterol pathway in lens underlies simvastatin-induced cataracts in Chbb Thom rats. J. Lipid Res. 44, 198–211 (2003).
pubmed: 12518039 doi: 10.1194/jlr.M200002-JLR200
Hartman, H. A. et al. The safety evaluation of fluvastatin, an HMG-CoA reductase inhibitor, in beagle dogs and rhesus monkeys. Toxicol. Sci. 29, 48–62 (1996).
doi: 10.1093/toxsci/29.1.48
Barnes, S. & Quinlan, R. A. Small molecules, both dietary and endogenous, influence the onset of lens cataracts. Exp. Eye Res. 156, 87–94 (2017).
pubmed: 27039707 doi: 10.1016/j.exer.2016.03.024
Porter, F. D. & Herman, G. E. Malformation syndromes caused by disorders of cholesterol synthesis. J. Lipid Res. 52, 6–34 (2011).
pubmed: 20929975 pmcid: 2999931 doi: 10.1194/jlr.R009548
Cotlier, E. & Rice, P. Cataracts in the Smith-Lemli-Opitz syndrome. Am. J. Ophthalmol. 72, 955–959 (1971).
pubmed: 4330375 doi: 10.1016/0002-9394(71)91696-5
Kelley, R. I. & Hennekam, R. C. The smith-lemli-opitz syndrome. J. Med. Genet. 37, 321–335 (2000).
pubmed: 10807690 pmcid: 1734573 doi: 10.1136/jmg.37.5.321
Hübner, C. et al. Decreased plasma ubiquinone-10 concentration in patients with mevalonate kinase deficiency. Pediatr. Res. 34, 129–133 (1993).
pubmed: 8233712 doi: 10.1203/00006450-199308000-00004
He, M. et al. Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay. J. Clin. Invest. 121, 976–984 (2011).
pubmed: 21285510 pmcid: 3049385 doi: 10.1172/JCI42650
Krakowiak, P. A. et al. Lathosterolosis: an inborn error of human and murine cholesterol synthesis due to lathosterol 5-desaturase deficiency. Hum. Mol. Genet. 12, 1631–1641 (2003).
pubmed: 12812989 doi: 10.1093/hmg/ddg172
Leuschen, J. et al. Association of statin use with cataracts: a propensity score–matched analysis. JAMA Ophthalmol. 131, 1427–1434 (2013).
pubmed: 24052188 doi: 10.1001/jamaophthalmol.2013.4575
Saint-Gerons, D. M., Cortez, F. B., López, G. J., Castro, J. L. & Tabarés-Seisdedos, R. Cataracts and statins. A disproportionality analysis using data from VigiBase. Regulatory Toxicol. Pharmacol. 109, 104509 (2019).
doi: 10.1016/j.yrtph.2019.104509
Merath, K. M., Chang, B., Dubielzig, R., Jeannotte, R. & Sidjanin, D. J. A spontaneous mutation in Srebf2 leads to cataracts and persistent skin wounds in the lens opacity 13 (lop13) mouse. Mamm. Genome 22, 661–673 (2011).
pubmed: 21858719 pmcid: 3251904 doi: 10.1007/s00335-011-9354-2
Mori, M. et al. Lanosterol synthase mutations cause cholesterol deficiency–associated cataracts in the Shumiya cataract rat. J. Clin. Invest. 116, 395–404 (2006).
pubmed: 16440058 pmcid: 1350995 doi: 10.1172/JCI20797
Engwerda, A. et al. The phenotypic spectrum of proximal 6q deletions based on a large cohort derived from social media and literature reports. Eur. J. Hum. Genet. 26, 1478–1489 (2018).
pubmed: 29904178 pmcid: 6138703 doi: 10.1038/s41431-018-0172-9
Rare Chromosome Disorder Support Group. 6q deletions from 6q26 and 6q27. Unique (5460413) https://www.rarechromo.org/media/information/Chromosome%20%206/6q%20deletions%20from%206q26%20and%206q27%20FTNW.pdf (2018).
Backx, L. et al. Haploinsufficiency of the gene Quaking (QKI) is associated with the 6q terminal deletion syndrome. Am. J. Med. Genet. Part A 152, 319–326 (2010).
doi: 10.1002/ajmg.a.33202
Darbelli, L. & Richard, S. Emerging functions of the Quaking RNA‐binding proteins and link to human diseases. Wiley Interdiscip. Rev. RNA 7, 399–412 (2016).
pubmed: 26991871 doi: 10.1002/wrna.1344
De Bruin, R. G. et al. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression. Nat. Commun. 7, 1–20 (2016).
doi: 10.1038/ncomms10846
De Bruin, R. G. et al. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression. Sci. Rep. 6, 1–11 (2016).
doi: 10.1038/srep21643
Lu, H. et al. QKI regulates adipose tissue metabolism by acting as a brake on thermogenesis and promoting obesity. EMBO Rep. 21, e47929 (2020).
pubmed: 31868295 doi: 10.15252/embr.201947929
Zhu, H. et al. The QKI‐PLP pathway controls SIRT2 abundance in CNS myelin. Glia 60, 69–82 (2012).
pubmed: 21948283 doi: 10.1002/glia.21248
Shingu, T. et al. Qki deficiency maintains stemness of glioma stem cells in suboptimal environment by downregulating endolysosomal degradation. Nat. Genet. 49, 75–86 https://doi.org/10.1038/ng.3711 (2016).
pubmed: 27841882 pmcid: 5453714 doi: 10.1038/ng.3711
Corsten, M. F. & Shah, K. Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol. 9, 376–384 (2008).
pubmed: 18374291 doi: 10.1016/S1470-2045(08)70099-8
Cvekl, A. & Ashery-Padan, R. The cellular and molecular mechanisms of vertebrate lens development. Development 141, 4432–4447 (2014).
pubmed: 25406393 pmcid: 4302924 doi: 10.1242/dev.107953
Ogino, H., Ochi, H., Reza, H. M. & Yasuda, K. Transcription factors involved in lens development from the preplacodal ectoderm. Dev. Biol. 363, 333–347 (2012).
pubmed: 22269169 doi: 10.1016/j.ydbio.2012.01.006
Hatfield, J. S., Skoff, R. P., Maisel, H. & Eng, L. Glial fibrillary acidic protein is localized in the lens epithelium. J. Cell Biol. 98, 1895–1898 (1984).
pubmed: 6373785 doi: 10.1083/jcb.98.5.1895
Song, S. et al. Functions of the intermediate filament cytoskeleton in the eye lens. J. Clin. Invest. 119, 1837–1848 (2009).
pubmed: 19587458 pmcid: 2701874 doi: 10.1172/JCI38277
Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double‐fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).
pubmed: 17868096 doi: 10.1002/dvg.20335
Yu, X. S. & Jiang, J. X. Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development. J. Cell Sci. 117, 871–880 (2004).
pubmed: 14762116 doi: 10.1242/jcs.00945
Schey, K. L., Petrova, R. S., Gletten, R. B. & Donaldson, P. J. The role of aquaporins in ocular lens homeostasis. Int. J. Mol. Sci. 18, 2693 (2017).
pmcid: 5751294 doi: 10.3390/ijms18122693
Srivastava, O. P., Kirk, M. C. & Srivastava, K. Characterization of covalent multimers of crystallins in aging human lenses. J. Biol. Chem. 279, 10901–10909 (2004).
pubmed: 14623886 doi: 10.1074/jbc.M308884200
Su, S. et al. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei. Invest. Ophthalmol. Vis. Sci. 52, 4182–4191 (2011).
pubmed: 21436267 doi: 10.1167/iovs.10-7094
Kuusisto, E., Salminen, A. & Alafuzoff, I. Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12, 2085–2090 (2001).
pubmed: 11447312 doi: 10.1097/00001756-200107200-00009
Meehan, S. et al. Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. J. Biol. Chem. 279, 3413–3419 (2004).
pubmed: 14615485 doi: 10.1074/jbc.M308203200
TANG, D., BORCHMAN, D., YAPPERT, M. C. & CENEDELLA, R. J. Influence of cholesterol on the interaction of α-crystallin with phospholipids. Exp. Eye Res. 66, 559–567 (1998).
pubmed: 9628803 doi: 10.1006/exer.1997.0467
Yang, C. et al. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J. 24, 3274–3283 (2010).
pubmed: 20410439 pmcid: 2923359 doi: 10.1096/fj.10-157255
Hu, L.-D., Wang, J., Chen, X.-J. & Yan, Y.-B. Lanosterol modulates proteostasis via dissolving cytosolic sequestosomes/aggresome-like induced structures. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118617 (2020).
pubmed: 31785334 doi: 10.1016/j.bbamcr.2019.118617
Shen, X. et al. Lanosterol synthase pathway alleviates lens opacity in age-related cortical cataract. J. Ophthalmol. 11, 4125893, https://doi.org/10.1155/2018/4125893 (2018).
Zhou, X. et al. Mature myelin maintenance requires Qki to coactivate PPARβ-RXRα–mediated lipid metabolism. J. Clin. Invest. 130, 2220–2236 (2020).
pubmed: 32202512 pmcid: 7191000 doi: 10.1172/JCI131800
Adams, C. M. et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J. Biol. Chem. 279, 52772–52780 (2004).
pubmed: 15452130 doi: 10.1074/jbc.M410302200
Kamisuki, S. et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem. Biol. 16, 882–892 (2009).
pubmed: 19716478 doi: 10.1016/j.chembiol.2009.07.007
Moon, S.-H. et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176, 564–580 (2019). e519.
pubmed: 30580964 doi: 10.1016/j.cell.2018.11.011
Sakai, J. et al. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85, 1037–1046 (1996).
pubmed: 8674110 doi: 10.1016/S0092-8674(00)81304-5
Seo, Y.-K. et al. Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell Metab. 13, 367–375 (2011).
pubmed: 21459322 pmcid: 3086264 doi: 10.1016/j.cmet.2011.03.005
Suzuki, R. et al. Diabetes and insulin in regulation of brain cholesterol metabolism. Cell Metab. 12, 567–579 (2010).
pubmed: 21109190 pmcid: 3205997 doi: 10.1016/j.cmet.2010.11.006
Pal, A. & Levy, Y. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins. PLoS Comput. Biol. 15, e1006768 (2019).
pubmed: 30933978 pmcid: 6467422 doi: 10.1371/journal.pcbi.1006768
Teplova, M. et al. Structure–function studies of STAR family Quaking proteins bound to their in vivo RNA target sites. Genes Dev. 27, 928–940 (2013).
pubmed: 23630077 pmcid: 3650229 doi: 10.1101/gad.216531.113
Braddock, D. T., Baber, J. L., Levens, D. & Clore, G. M. Molecular basis of sequence‐specific single‐stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single‐stranded DNA. EMBO J. 21, 3476–3485 (2002).
pubmed: 12093748 pmcid: 126100 doi: 10.1093/emboj/cdf352
Braddock, D. T., Louis, J. M., Baber, J. L., Levens, D. & Clore, G. M. Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature 415, 1051 (2002).
pubmed: 11875576 doi: 10.1038/4151051a
Sharma, M., Sharma, S. & Alawada, A. Understanding the binding specificities of mRNA targets by the mammalian Quaking protein. Nucleic Acids Res. 47, 10564–10579 (2019).
pubmed: 31602485 pmcid: 6847458 doi: 10.1093/nar/gkz877
Sharpe, L. J. & Brown, A. J. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J. Biol. Chem. 288, 18707–18715 (2013).
pubmed: 23696639 pmcid: 3696645 doi: 10.1074/jbc.R113.479808
Vallett, S. M., Sanchez, H. B., Rosenfeld, J. M. & Osborne, T. F. A direct role for sterol regulatory element binding protein in activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene. J. Biol. Chem. 271, 12247–12253 (1996).
pubmed: 8647822 doi: 10.1074/jbc.271.21.12247
Backe, P. H., Messias, A. C., Ravelli, R. B., Sattler, M. & Cusack, S. X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids. Structure 13, 1055–1067 (2005).
pubmed: 16004877 doi: 10.1016/j.str.2005.04.008
Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).
pubmed: 16413480 doi: 10.1016/j.cell.2005.12.022
Sato, R. SREBPs: protein interaction and SREBPs. FEBS J. 276, 622–627 (2009).
pubmed: 19143831 doi: 10.1111/j.1742-4658.2008.06807.x
Bloemendal, H. et al. Ageing and vision: structure, stability and function of lens crystallins. Prog. Biophys. Mol. Biol. 86, 407–485 (2004).
pubmed: 15302206 doi: 10.1016/j.pbiomolbio.2003.11.012
Haslbeck, M., Franzmann, T., Weinfurtner, D. & Buchner, J. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12, 842–846 (2005).
pubmed: 16205709 doi: 10.1038/nsmb993
Liu, K. et al. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract. Proc. Natl Acad. Sci. USA 112, 1071–1076 (2015).
pubmed: 25583491 doi: 10.1073/pnas.1404059112 pmcid: 4313858
Wride, M. A. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos. Trans. R. Soc. B Biol. Sci. 366, 1219–1233 (2011).
doi: 10.1098/rstb.2010.0324
Mathias, R. T., Kistler, J. & Donaldson, P. The lens circulation. J. Membr. Biol. 216, 1–16 (2007).
pubmed: 17568975 doi: 10.1007/s00232-007-9019-y
Ikonen, E. Mechanisms of cellular cholesterol compartmentalization: recent insights. Curr. Opin. Cell Biol. 53, 77–83 (2018).
pubmed: 29960186 doi: 10.1016/j.ceb.2018.06.002
Inukai, S., Kock, K. H. & Bulyk, M. L. Transcription factor–DNA binding: beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110–119 (2017).
pubmed: 28359978 pmcid: 5447501 doi: 10.1016/j.gde.2017.02.007
Ryan, D. P., Sundaramoorthy, R., Martin, D., Singh, V. & Owen‐Hughes, T. The DNA‐binding domain of the Chd1 chromatin‐remodelling enzyme contains SANT and SLIDE domains. EMBO J. 30, 2596–2609 (2011).
pubmed: 21623345 pmcid: 3155300 doi: 10.1038/emboj.2011.166
Zhao, C. et al. Dual requirement of CHD8 for chromatin landscape establishment and histone methyltransferase recruitment to promote CNS myelination and repair. Dev. Cell 45, 753–768 (2018).
pubmed: 29920279 pmcid: 6063525 doi: 10.1016/j.devcel.2018.05.022
Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).
pubmed: 30675018 doi: 10.1038/s41576-018-0089-8
MacQuarrie, K. L., Fong, A. P., Morse, R. H. & Tapscott, S. J. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet. 27, 141–148 (2011).
pubmed: 21295369 pmcid: 3068217 doi: 10.1016/j.tig.2011.01.001
Barboro, P., Ferrari, N. & Balbi, C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett. 352, 152–159 (2014).
pubmed: 25016060 doi: 10.1016/j.canlet.2014.06.019
Li, J. et al. HNRNPK maintains epidermal progenitor function through transcription of proliferation genes and degrading differentiation promoting mRNAs. Nat. Commun. 10, 1–14 (2019).
Larocque, D. et al. Nuclear retention of MBP mRNAs in the quaking viable mice. Neuron 36, 815–829 (2002).
pubmed: 12467586 doi: 10.1016/S0896-6273(02)01055-3
Muchowski, P. J. & Wacker, J. L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11–22 (2005).
pubmed: 15611723 doi: 10.1038/nrn1587
Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N. & Ciechanover, A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 26, 869–885 (2016).
pubmed: 27444871 pmcid: 4973335 doi: 10.1038/cr.2016.86
Rao, G., Croft, B., Teng, C. & Awasthi, V. Ubiquitin-proteasome system in neurodegenerative disorders. J. Drug Metab. Toxicol. 6, 187 https://doi.org/10.4172/2157-7609.1000187 (2015).
Thibaudeau, T. A., Anderson, R. T. & Smith, D. M. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat. Commun. 9, 1–14 (2018).
doi: 10.1038/s41467-018-03509-0
Liu, Z. et al. Mechanistic insights into the switch of αB-crystallin chaperone activity and self-multimerization. J. Biol. Chem. 293, 14880–14890 (2018).
pubmed: 30076220 pmcid: 6153274 doi: 10.1074/jbc.RA118.004034
Mok, S.-A. et al. Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nat. Struct. Mol. Biol. 25, 384–393 (2018).
pubmed: 29728653 pmcid: 5942583 doi: 10.1038/s41594-018-0057-1
Webster, J. M., Darling, A. L., Uversky, V. N. & Blair, L. J. Small heat Shock proteins, big impact on protein aggregation in neurodegenerative disease. Front. Pharmacol. 10, 1047 https://doi.org/10.3389/fphar.2019.01047 (2019).
Imayoshi, I. et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat. Neurosci. 11, 1153 (2008).
pubmed: 18758458 doi: 10.1038/nn.2185
Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).
pubmed: 17251932 doi: 10.1038/nature05541
Sundqvist, A. & Ericsson, J. Transcription-dependent degradation controls the stability of the SREBP family of transcription factors. Proc. Natl Acad. Sci. USA 100, 13833–13838 (2003).
pubmed: 14615581 doi: 10.1073/pnas.2335135100 pmcid: 283507
Snevechenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrilamide gels. Anal. Chem. 68, 850–858 (1996).
doi: 10.1021/ac950914h
Peng, J. & Gygi, S. P. Proteomics: the move to mixtures. J. Mass Spectrom. 36, 1083–1091 (2001).
pubmed: 11747101 doi: 10.1002/jms.229
Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).
pubmed: 24226387 doi: 10.1016/1044-0305(94)80016-2
Westermark, G. T., Johnson, K. H. & Westermark, P. in Methods in enzymology vol. 309, 3–25 (Elsevier, 1999).
Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408–420 (2011).
pubmed: 21816276 pmcid: 3336367 doi: 10.1016/j.cell.2011.06.034
Meerbrey, K. L. et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc. Natl Acad. Sci. USA 108, 3665–3670 (2011).
pubmed: 21307310 doi: 10.1073/pnas.1019736108 pmcid: 3048138
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783 (2014).
pubmed: 25075903 pmcid: 4486245 doi: 10.1038/nmeth.3047
Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
doi: 10.1126/science.1247005 pubmed: 24336571
Toiber, D. et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell 51, 454–468 (2013).
pubmed: 23911928 pmcid: 3761390 doi: 10.1016/j.molcel.2013.06.018
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650 (2016).
pubmed: 27560171 pmcid: 5032908 doi: 10.1038/nprot.2016.095
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635 pubmed: 23104886
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700 doi: 10.1093/bioinformatics/btu638
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Lan, F. et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689 (2007).
pubmed: 17851529 doi: 10.1038/nature06192
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
pubmed: 19261174 pmcid: 2690996 doi: 10.1186/gb-2009-10-3-r25
Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728 (2012).
pubmed: 22936215 doi: 10.1038/nprot.2012.101
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Shen, L., Shao, N., Liu, X. & Nestler, E. ngs. plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15, 284 (2014).
pubmed: 24735413 pmcid: 4028082 doi: 10.1186/1471-2164-15-284
Xie, Y. et al. Paf1 and Ctr9 subcomplex formation is essential for Paf1 complex assembly and functional regulation. Nat. Commun. 9, 1–13 (2018).
doi: 10.1038/s41467-018-06237-7

Auteurs

Seula Shin (S)

Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.

Hao Zhou (H)

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China.

Chenxi He (C)

Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.

Yanjun Wei (Y)

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Yunfei Wang (Y)

Clinical Science Division, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

Takashi Shingu (T)

Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Ailiang Zeng (A)

Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Shaobo Wang (S)

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Xin Zhou (X)

Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Jilin, China.

Hongtao Li (H)

Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China.

Qiang Zhang (Q)

Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Qinling Mo (Q)

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China.

Jiafu Long (J)

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China.

Fei Lan (F)

Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.

Yiwen Chen (Y)

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Jian Hu (J)

Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. jhu3@mdanderson.org.
Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA. jhu3@mdanderson.org.
Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA. jhu3@mdanderson.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH