Control with uncertain data of socially structured compartmental epidemic models.
COVID-19
Epidemic modelling
Non-pharmaceutical interventions
Optimal control
Social structure
Uncertainty quantification
Journal
Journal of mathematical biology
ISSN: 1432-1416
Titre abrégé: J Math Biol
Pays: Germany
ID NLM: 7502105
Informations de publication
Date de publication:
23 05 2021
23 05 2021
Historique:
received:
01
05
2020
accepted:
15
05
2021
revised:
23
04
2021
entrez:
23
5
2021
pubmed:
24
5
2021
medline:
1
6
2021
Statut:
epublish
Résumé
The adoption of containment measures to reduce the amplitude of the epidemic peak is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental models must be modified and studied to correctly describe the effects of forced external actions to reduce the impact of the disease. The importance of social structure, such as the age dependence that proved essential in the recent COVID-19 pandemic, must be considered, and in addition, the available data are often incomplete and heterogeneous, so a high degree of uncertainty must be incorporated into the model from the beginning. In this work we address these aspects, through an optimal control formulation of a socially structured epidemic model in presence of uncertain data. After the introduction of the optimal control problem, we formulate an instantaneous approximation of the control that allows us to derive new feedback controlled compartmental models capable of describing the epidemic peak reduction. The need for long-term interventions shows that alternative actions based on the social structure of the system can be as effective as the more expensive global strategy. The timing and intensity of interventions, however, is particularly relevant in the case of uncertain parameters on the actual number of infected people. Simulations related to data from the first wave of the recent COVID-19 outbreak in Italy are presented and discussed.
Identifiants
pubmed: 34023964
doi: 10.1007/s00285-021-01617-y
pii: 10.1007/s00285-021-01617-y
pmc: PMC8141280
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
63Subventions
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : 2017KKJP4X
Références
Math Biosci. 2009 Jul;220(1):24-33
pubmed: 19371752
Int J Environ Res Public Health. 2020 Oct 17;17(20):
pubmed: 33080869
PLoS Comput Biol. 2017 Sep 12;13(9):e1005697
pubmed: 28898249
Philos Trans A Math Phys Eng Sci. 2014 Nov 13;372(2028):
pubmed: 25288820
Math Biosci. 2012 Jan;235(1):1-7
pubmed: 22037144
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10484-10491
pubmed: 32327608
PLoS One. 2015 Jul 15;10(7):e0133203
pubmed: 26176549
J Infect. 2020 Aug;81(2):e102-e103
pubmed: 32425274
J Math Biol. 2008 Jul;57(1):1-27
pubmed: 17985131
Euro Surveill. 2020 Mar;25(10):
pubmed: 32183930
Bull Math Biol. 2012 Apr;74(4):958-80
pubmed: 22147102
Math Biosci Eng. 2019 Nov 14;17(2):1074-1089
pubmed: 32233571
Lancet. 2020 Apr 11;395(10231):1225-1228
pubmed: 32178769
Int J Infect Dis. 2020 Apr;93:201-204
pubmed: 32097725
Math Biosci. 2012 Dec;240(2):250-9
pubmed: 22989951
Lancet Infect Dis. 2020 Jun;20(6):669-677
pubmed: 32240634
Euro Surveill. 2020 Mar;25(12):
pubmed: 32234121
J Theor Biol. 2010 Jul 21;265(2):136-50
pubmed: 20382168
Cell Death Dis. 2020 Jun 8;11(6):438
pubmed: 32513951
Math Biosci Eng. 2012 Jul;9(3):553-76
pubmed: 22881026
J Math Biol. 1989;27(3):233-58
pubmed: 2746140
Nat Med. 2020 Jun;26(6):855-860
pubmed: 32322102
Phys Rev E. 2020 Aug;102(2-1):022303
pubmed: 32942503
BMC Infect Dis. 2010 Feb 19;10:32
pubmed: 20170501
Infect Dis Model. 2017 Aug;2(3):379-398
pubmed: 29250607
Lancet. 2021 Jan 9;397(10269):93-94
pubmed: 33347812
J Travel Med. 2020 Mar 13;27(2):
pubmed: 32052846
Math Biosci. 2017 Oct;292:86-96
pubmed: 28801246
Front Med (Lausanne). 2020 Apr 30;7:190
pubmed: 32426363
J Math Biol. 2013 Jun;66(7):1463-74
pubmed: 22562623
Nature. 2020 Aug;584(7821):425-429
pubmed: 32604404
PLoS Med. 2008 Mar 25;5(3):e74
pubmed: 18366252