White matter changes in psychosis risk relate to development and are not impacted by the transition to psychosis.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
22
11
2020
accepted:
14
04
2021
pubmed:
25
5
2021
medline:
15
3
2022
entrez:
24
5
2021
Statut:
ppublish
Résumé
Subtle alterations in white matter microstructure are observed in youth at clinical high risk (CHR) for psychosis. However, the timing of these changes and their relationships to the emergence of psychosis remain unclear. Here, we track the evolution of white matter abnormalities in a large, longitudinal cohort of CHR individuals comprising the North American Prodrome Longitudinal Study (NAPLS-3). Multi-shell diffusion magnetic resonance imaging data were collected across multiple timepoints (1-5 over 1 year) in 286 subjects (aged 12-32 years): 25 CHR individuals who transitioned to psychosis (CHR-P; 61 scans), 205 CHR subjects with unknown transition outcome after the 1-year follow-up period (CHR-U; 596 scans), and 56 healthy controls (195 scans). Linear mixed effects models were fitted to infer the impact of age and illness-onset on variation in the fractional anisotropy of cellular tissue (FA
Identifiants
pubmed: 34024906
doi: 10.1038/s41380-021-01128-8
pii: 10.1038/s41380-021-01128-8
pmc: PMC8611104
mid: NIHMS1720538
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6833-6844Subventions
Organisme : NIMH NIH HHS
ID : U01 MH081902
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH076989
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH074794
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB015902
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH081928
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH102377
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH109977
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH082022
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH081984
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM136651
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH108574
Pays : United States
Organisme : NIMH NIH HHS
ID : K01 MH115247
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH081857
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH082004
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH081944
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Di Biase MA, Pantelis C, Zalesky A White Matter Pathology in Schizophrenia. Neuroimaging in Schizophrenia. Springer2020, pp 71-91.
Saito J, Hori M, Nemoto T, Katagiri N, Shimoji K, Ito S, et al. Longitudinal study examining abnormal white matter integrity using a tract‐specific analysis in individuals with a high risk for psychosis. Psychiatry Clin Neurosci. 2017;71:530–541.
pubmed: 28220654
doi: 10.1111/pcn.12515
Tomyshev AS, Lebedeva IS, Akhadov TA, Omelchenko MA, Rumyantsev AO, Kaleda VG. Alterations in white matter microstructure and cortical thickness in individuals at ultra-high risk of psychosis: A multimodal tractography and surface-based morphometry study. Psychiatry Res: Neuroimaging. 2019;289:26–36.
pubmed: 31132567
doi: 10.1016/j.pscychresns.2019.05.002
Peters B, Schmitz N, Dingemans P, Van Amelsvoort T, Linszen D, De Haan L, et al. Preliminary evidence for reduced frontal white matter integrity in subjects at ultra-high-risk for psychosis. Schizophrenia Res. 2009;111:192–193.
doi: 10.1016/j.schres.2009.03.018
Cho KIK, Shenton ME, Kubicki M, Jung WH, Lee TY, Yun J-Y, et al. Altered thalamo-cortical white matter connectivity: Probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis. Schizophrenia Bull. 2016;42:723–731.
doi: 10.1093/schbul/sbv169
Karlsgodt KH, Niendam TA, Bearden CE, Cannon TD. White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biol psychiatry. 2009;66:562–569.
pubmed: 19423081
pmcid: 2805703
doi: 10.1016/j.biopsych.2009.03.013
Wang C, Ji F, Hong Z, Poh J, Krishnan R, Lee J, et al. Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRIKS study. Psychological Med. 2016;46:2771–2783.
doi: 10.1017/S0033291716001410
Epstein KA, Cullen KR, Mueller BA, Robinson P, Lee S, Kumra S. White matter abnormalities and cognitive impairment in early-onset schizophrenia-spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2014;53:362–372. e361-362
pubmed: 24565363
doi: 10.1016/j.jaac.2013.12.007
Katagiri N, Pantelis C, Nemoto T, Zalesky A, Hori M, Shimoji K, et al. A longitudinal study investigating sub-threshold symptoms and white matter changes in individuals with an ‘at risk mental state’(ARMS). Schizophrenia Res. 2015;162:7–13.
doi: 10.1016/j.schres.2015.01.002
Fitzsimmons J, Rosa P, Sydnor VJ, Reid BE, Makris N, Goldstein JM, et al. Cingulum bundle abnormalities and risk for schizophrenia. Schizophrenia Res. 2020;215:385–391.
doi: 10.1016/j.schres.2019.08.017
Krakauer K, Nordentoft M, Glenthøj B, Raghava J, Nordholm D, Randers L, et al. White matter maturation during 12 months in individuals at ultra‐high‐risk for psychosis. Acta Psychiatr Scandinavica. 2018;137:65–78.
doi: 10.1111/acps.12835
Kristensen TD, Mandl RC, Raghava JM, Jessen K, Jepsen JRM, Fagerlund B, et al. Widespread higher fractional anisotropy associates to better cognitive functions in individuals at ultra‐high risk for psychosis. Hum brain Mapp. 2019;40:5185–5201.
pubmed: 31430023
pmcid: 6864899
doi: 10.1002/hbm.24765
Tomyshev A, Lebedeva I, Akhadov T, Omel’chenko M, Ublinskii M, Semenova N, et al. MRI study for the features of brain conduction pathways in patients with an ultra-high risk of endogenous psychoses. Bull Exp Biol Med. 2017;162:425–429.
pubmed: 28239791
doi: 10.1007/s10517-017-3631-3
Peters BD, de Haan L, Dekker N, Blaas J, Becker HE, Dingemans PM, et al. White matter fibertracking in first-episode schizophrenia, schizoaffective patients and subjects at ultra-high risk of psychosis. Neuropsychobiology. 2008;58:19–28.
pubmed: 18781087
doi: 10.1159/000154476
Peters BD, Dingemans PM, Dekker N, Blaas J, Akkerman E, van Amelsvoort TA, et al. White matter connectivity and psychosis in ultra-high-risk subjects: a diffusion tensor fiber tracking study. Psychiatry Res. 2010;181:44–50.
pubmed: 19954931
doi: 10.1016/j.pscychresns.2009.10.008
Schmidt A, Lenz C, Smieskova R, Harrisberger F, Walter A, Riecher-Rössler A, et al. Brain diffusion changes in emerging psychosis and the impact of state-dependent psychopathology. Neurosignals. 2015;23:71–83.
pubmed: 26682550
doi: 10.1159/000442605
Fusar-Poli P, Cappucciati M, Borgwardt S, Woods SW, Addington J, Nelson B, et al. Heterogeneity of psychosis risk within individuals at clinical high risk: a meta-analytical stratification. JAMA psychiatry. 2016;73:113–120.
pubmed: 26719911
doi: 10.1001/jamapsychiatry.2015.2324
Chung Y, Cannon TD. Brain imaging during the transition from psychosis prodrome to schizophrenia. J Nerv Ment Dis. 2015;203:336–341.
pubmed: 25900551
pmcid: 4414922
doi: 10.1097/NMD.0000000000000286
Takahashi T, Wood SJ, Yung AR, Soulsby B, McGorry PD, Suzuki M, et al. Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Arch Gen Psychiatry. 2009;66:366–376.
pubmed: 19349306
doi: 10.1001/archgenpsychiatry.2009.12
Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TGM, et al. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol psychiatry. 2015;77:147–157.
pubmed: 25034946
doi: 10.1016/j.biopsych.2014.05.023
Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet. 2003;361:281–288.
pubmed: 12559861
doi: 10.1016/S0140-6736(03)12323-9
Takahashi T, Wood SJ, Yung AR, Phillips LJ, Soulsby B, McGorry PD, et al. Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophrenia Res. 2009;111:94–102.
doi: 10.1016/j.schres.2009.03.024
Ziermans TB, Schothorst PF, Schnack HG, Koolschijn PCM, Kahn RS, van Engeland H, et al. Progressive structural brain changes during development of psychosis. Schizophrenia Bull. 2012;38:519–530.
doi: 10.1093/schbul/sbq113
Borgwardt SJ, McGuire PK, Aston J, Gschwandtner U, Pflüger MO, Stieglitz R-D, et al. Reductions in frontal, temporal and parietal volume associated with the onset of psychosis. Schizophrenia Res. 2008;106:108–114.
doi: 10.1016/j.schres.2008.08.007
Walter A, Studerus E, Smieskova R, Kuster P, Aston J, Lang UE, et al. Hippocampal volume in subjects at high risk of psychosis: a longitudinal MRI study. Schizophrenia Res. 2012;142:217–222.
doi: 10.1016/j.schres.2012.10.013
Sun D, Phillips L, Velakoulis D, Yung A, McGorry PD, Wood SJ, et al. Progressive brain structural changes mapped as psychosis develops in ‘at risk’individuals. Schizophrenia Res. 2009;108:85–92.
doi: 10.1016/j.schres.2008.11.026
Chung Y, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, et al. Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk. JAMA psychiatry. 2018;75:960–968.
pubmed: 29971330
pmcid: 6142910
doi: 10.1001/jamapsychiatry.2018.1543
Carletti F, Woolley JB, Bhattacharyya S, Perez-Iglesias R, Fusar Poli P, Valmaggia L, et al. Alterations in white matter evident before the onset of psychosis. Schizophrenia Bull. 2012;38:1170–1179.
doi: 10.1093/schbul/sbs053
Rigucci S, Santi G, Corigliano V, Imola A, Rossi-Espagnet C, Mancinelli I, et al. White matter microstructure in ultra-high risk and first episode schizophrenia: a prospective study. Psychiatry Res: Neuroimaging. 2016;247:42–48.
pubmed: 26651180
doi: 10.1016/j.pscychresns.2015.11.003
Peters BD, Szeszko PR, Radua J, Ikuta T, Gruner P, DeRosse P, et al. White matter development in adolescence: diffusion tensor imaging and meta-analytic results. Schizophrenia Bull. 2012;38:1308–1317.
doi: 10.1093/schbul/sbs054
Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci. 2011;31:10937–10947.
pubmed: 21795544
pmcid: 6623097
doi: 10.1523/JNEUROSCI.5302-10.2011
Takahashi N, Sakurai T, Davis KL, Buxbaum JD. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol. 2011;93:13–24.
pubmed: 20950668
doi: 10.1016/j.pneurobio.2010.09.004
Roussos P, Haroutunian V Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci. 2014;8:1–7.
Karayumak SC, Bouix S, Ning L, James A, Crow T, Shenton M, et al. Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters. NeuroImage. 2019;184:180–200.
doi: 10.1016/j.neuroimage.2018.08.073
Cropley VL, Klauser P, Lenroot RK, Bruggemann J, Sundram S, Bousman C, et al. Accelerated gray and white matter deterioration with age in schizophrenia. Am J Psychiatry. 2016;174:286–295.
pubmed: 27919183
doi: 10.1176/appi.ajp.2016.16050610
Di Biase MA, Cropley VL, Cocchi L, Fornito A, Calamante F, Ganella EP et al. Linking cortical and connectional pathology in schizophrenia. Schizophrenia Bull. 2018; sby121.
Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62:717–730.
pubmed: 19623619
doi: 10.1002/mrm.22055
Addington J, Liu L, Brummitt K, Bearden CE, Cadenhead KS, Cornblatt BA et al. North American Prodrome Longitudinal Study (NAPLS 3): methods and baseline description. Schizophrenia Res. 2020. In Press.
McGlashan T, Walsh B, Woods S The psychosis-risk syndrome: handbook for diagnosis and follow-up. USA: Oxford University Press 2010.
Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Ventura J, McFarlane W, et al. Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophrenia Bull. 2003;29:703–715.
doi: 10.1093/oxfordjournals.schbul.a007040
First MB, Gibbon M The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II). In: Hersen M, Haynes SN, Goldstein G, Heiby EM, Hilsenroth MJ, Beers SR et al. (eds). Comprehensive Handbook of Psychological Assessment, vol. 2: Personality Assessment. John Wiley & Sons Inc: New Jersey, 2004, pp 134-143.
Ning L, Bonet-Carne E, Grussu F, Sepehrband F, Kaden E, Veraart J, et al. Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results. NeuroImage. 2020;221:117128.
pubmed: 32673745
doi: 10.1016/j.neuroimage.2020.117128
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. NeuroImage. 2012;62:782–790.
pubmed: 21979382
doi: 10.1016/j.neuroimage.2011.09.015
Andersson JL, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage. 2016;125:1063–1078.
pubmed: 26481672
doi: 10.1016/j.neuroimage.2015.10.019
Andersson JL, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. NeuroImage. 2016;141:556–572.
pubmed: 27393418
doi: 10.1016/j.neuroimage.2016.06.058
Jahanshad N, Kochunov PV, Sprooten E, Mandl RC, Nichols TE, Almasy L, et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. NeuroImage. 2013;81:455–469.
pubmed: 23629049
doi: 10.1016/j.neuroimage.2013.04.061
Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med image Anal. 2008;12:26–41.
pubmed: 17659998
doi: 10.1016/j.media.2007.06.004
Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31:1487–1505.
pubmed: 16624579
doi: 10.1016/j.neuroimage.2006.02.024
Ilin A, Raiko T. Practical approaches to principal component analysis in the presence of missing values. J Mach Learn Res. 2010;11:1957–2000.
Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. NeuroImage. 2014;92:381–397.
pubmed: 24530839
doi: 10.1016/j.neuroimage.2014.01.060
Smith SM Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44:83–98.
pubmed: 18501637
doi: 10.1016/j.neuroimage.2008.03.061
Smith SM, Nichols TE, Vidaurre D, Winkler AM, Behrens TE, Glasser MF, et al. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat Neurosci. 2015;18:1565–1567.
pubmed: 26414616
pmcid: 4625579
doi: 10.1038/nn.4125
Taquet M, Smith SM, Prohl AK, Peters JM, Warfield SK, Scherrer B et al. A structural brain network of genetic vulnerability to psychiatric illness. Molecular Psychiatry. 2020: 1–12.
Dev SI, Nguyen TT, McKenna BS, Sutherland AN, Bartsch H, Theilmann RJ, et al. Steeper slope of age-related changes in white matter microstructure and processing speed in bipolar disorder. Am J Geriatr Psychiatry. 2017;25:744–752.
pubmed: 28342644
pmcid: 5479871
doi: 10.1016/j.jagp.2017.02.014
van Velzen LS, Kelly S, Isaev D, Aleman A, Aftanas LI, Bauer J, et al. White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol Psychiatry. 2020;25:1511–1525.
pubmed: 31471575
doi: 10.1038/s41380-019-0477-2
Hawco C, Voineskos AN, Radhu N, Rotenberg D, Ameis S, Backhouse FA, et al. Age and gender interactions in white matter of schizophrenia and obsessive compulsive disorder compared to non-psychiatric controls: commonalities across disorders. Brain imaging Behav. 2017;11:1836–1848.
pubmed: 27915397
doi: 10.1007/s11682-016-9657-8
Yeatman JD, Wandell BA, Mezer AA. Lifespan maturation and degeneration of human brain white matter. Nat Commun. 2014;5:4932–4932.
pubmed: 25230200
doi: 10.1038/ncomms5932
Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.
pubmed: 11283309
doi: 10.1146/annurev.neuro.24.1.167
Nakajima R, Kinoshita M, Shinohara H, Nakada M. The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain imaging Behav. 2020;14:2817–2830.
pubmed: 31468374
doi: 10.1007/s11682-019-00187-4
Barbu MC, Spiliopoulou A, Colombo M, McKeigue P, Clarke T-K, Howard DM, et al. Expression quantitative trait loci-derived scores and white matter microstructure in UK Biobank: a novel approach to integrating genetics and neuroimaging. Trans Psychiatry. 2020;10:55.
doi: 10.1038/s41398-020-0724-y
Tomassy GS, Dershowitz LB, Arlotta P. Diversity matters: a revised guide to myelination. Trends Cell Biol. 2016;26:135–147.
pubmed: 26442841
doi: 10.1016/j.tcb.2015.09.002
Di Biase MA, Zhang F, Lyall A, Kubicki M, Mandl RC, Sommer IE et al. Neuroimaging auditory verbal hallucinations in schizophrenia patient and healthy populations. Psychological Med. 2019: 1–10.
Tang Y, Pasternak O, Kubicki M, Rathi Y, Zhang T, Wang J, et al. Altered cellular white matter but not extracellular free water on diffusion MRI in individuals at clinical high risk for psychosis. Am J Psychiatry. 2019;176:820–828.
pubmed: 31230461
pmcid: 7142275
doi: 10.1176/appi.ajp.2019.18091044
Becker MP, Collins PF, Lim KO, Muetzel RL, Luciana M. Longitudinal changes in white matter microstructure after heavy cannabis use. Dev Cogn Neurosci. 2015;16:23–35.
pubmed: 26602958
pmcid: 4691379
doi: 10.1016/j.dcn.2015.10.004
McGorry PD, Hartmann JA, Spooner R, Nelson B. Beyond the “at risk mental state” concept: transitioning to transdiagnostic psychiatry. World Psychiatry. 2018;17:133–142.
pubmed: 29856558
pmcid: 5980504
doi: 10.1002/wps.20514
Woods SW, Powers AR III, Taylor JH, Davidson CA, Johannesen JK, Addington J, et al. Lack of diagnostic pluripotentiality in patients at clinical high risk for psychosis: specificity of comorbidity persistence and search for pluripotential subgroups. Schizophrenia Bull. 2018;44:254–263.
doi: 10.1093/schbul/sbx138
Fusar-Poli P, Rutigliano G, Stahl D, Davies C, De Micheli A, Ramella-Cravaro V, et al. Long-term validity of the at risk mental state (ARMS) for predicting psychotic and non-psychotic mental disorders. Eur Psychiatry. 2017;42:49–54.
pubmed: 28212505
doi: 10.1016/j.eurpsy.2016.11.010
Webb JR, Addington J, Perkins DO, Bearden CE, Cadenhead KS, Cannon TD, et al. Specificity of incident diagnostic outcomes in patients at clinical high risk for psychosis. Schizophrenia Bull. 2015;41:1066–1075.
doi: 10.1093/schbul/sbv091