Targeting novel LSD1-dependent ACE2 demethylation domains inhibits SARS-CoV-2 replication.


Journal

Cell discovery
ISSN: 2056-5968
Titre abrégé: Cell Discov
Pays: England
ID NLM: 101661034

Informations de publication

Date de publication:
24 May 2021
Historique:
received: 27 12 2020
accepted: 24 04 2021
entrez: 25 5 2021
pubmed: 26 5 2021
medline: 26 5 2021
Statut: epublish

Résumé

Treatment options for COVID-19 remain limited, especially during the early or asymptomatic phase. Here, we report a novel SARS-CoV-2 viral replication mechanism mediated by interactions between ACE2 and the epigenetic eraser enzyme LSD1, and its interplay with the nuclear shuttling importin pathway. Recent studies have shown a critical role for the importin pathway in SARS-CoV-2 infection, and many RNA viruses hijack this axis to re-direct host cell transcription. LSD1 colocalized with ACE2 at the cell surface to maintain demethylated SARS-CoV-2 spike receptor-binding domain lysine 31 to promote virus-ACE2 interactions. Two newly developed peptide inhibitors competitively inhibited virus-ACE2 interactions, and demethylase access to significantly inhibit viral replication. Similar to some other predominantly plasma membrane proteins, ACE2 had a novel nuclear function: its cytoplasmic domain harbors a nuclear shuttling domain, which when demethylated by LSD1 promoted importin-α-dependent nuclear ACE2 entry following infection to regulate active transcription. A novel, cell permeable ACE2 peptide inhibitor prevented ACE2 nuclear entry, significantly inhibiting viral replication in SARS-CoV-2-infected cell lines, outperforming other LSD1 inhibitors. These data raise the prospect of post-exposure prophylaxis for SARS-CoV-2, either through repurposed LSD1 inhibitors or new, nuclear-specific ACE2 inhibitors.

Identifiants

pubmed: 34031383
doi: 10.1038/s41421-021-00279-w
pii: 10.1038/s41421-021-00279-w
pmc: PMC8143069
doi:

Types de publication

Journal Article

Langues

eng

Pagination

37

Subventions

Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : APP1173880

Commentaires et corrections

Type : ErratumIn

Références

Ing, A. J., Cocks, C. & Green, J. P. COVID-19: in the footsteps of Ernest Shackleton. Thorax 75, 693–694 (2020).
doi: 10.1136/thoraxjnl-2020-215091 pubmed: 32461231
Long, Q. X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 26, 1200–1204 (2020).
doi: 10.1038/s41591-020-0965-6 pubmed: 32555424
Yang, R., Gui, X. & Xiong, Y. Comparison of clinical characteristics of patients with asymptomatic vs symptomatic coronavirus disease 2019 in Wuhan, China. JAMA Netw. Open 3, e2010182 (2020).
pubmed: 32459353 pmcid: 7254178 doi: 10.1001/jamanetworkopen.2020.10182
Beigel, J. H. et al. Remdesivir for the treatment of Covid-19—preliminary report. N. Engl. J. Med. 383, 1813–1826 (2020).
Grein, J. et al. Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 382, 2327–2336 (2020).
pubmed: 32275812 doi: 10.1056/NEJMoa2007016
Paliani, U. & Cardona, A. COVID-19 and hydroxychloroquine: is the wonder drug failing? Eur. J. Intern. Med. 78, 1–3 (2020).
Furlow, B. COVACTA trial raises questions about tocilizumab’s benefit in COVID-19. Lancet Rheumatol. 2, e592 (2020).
pubmed: 32929415 pmcid: 7480990 doi: 10.1016/S2665-9913(20)30313-1
Investigators R.-C. et al. Interleukin-6 receptor antagonists in critically ill patients with covid-19. N. Engl. J. Med. 384, 1491–1502 (2021).
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
pubmed: 32015507 pmcid: 7095418 doi: 10.1038/s41586-020-2012-7
Jiang, F. et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat. Rev. Cardiol. 11, 413–426 (2014).
pubmed: 24776703 pmcid: 7097196 doi: 10.1038/nrcardio.2014.59
Kuba, K., Imai, Y., Ohto-Nakanishi, T. & Penninger, J. M. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharm. Ther. 128, 119–128 (2010).
doi: 10.1016/j.pharmthera.2010.06.003
Alhenc-Gelas, F. & Drueke, T. B. Blockade of SARS-CoV-2 infection by recombinant soluble ACE2. Kidney Int. 97, 1091–1093 (2020).
pubmed: 32354636 pmcid: 7194930 doi: 10.1016/j.kint.2020.04.009
Batlle, D., Wysocki, J. & Satchell, K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin. Sci. 134, 543–545 (2020).
doi: 10.1042/CS20200163
Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913 (2020).
Imai, Y. et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436, 112–116 (2005).
pubmed: 16001071 pmcid: 7094998 doi: 10.1038/nature03712
Lumbers, E. R., Delforce, S. J., Pringle, K. G. & Smith, G. R. The lung, the heart, the novel coronavirus, and the renin-angiotensin system; the need for clinical trials. Front. Med. 7, 248 (2020).
doi: 10.3389/fmed.2020.00248
Caly, L., Wagstaff, K. M. & Jans, D. A. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals? Antivir. Res. 95, 202–206 (2012).
pubmed: 22750233 doi: 10.1016/j.antiviral.2012.06.008
Jans, D. A., Martin, A. J. & Wagstaff, K. M. Inhibitors of nuclear transport. Curr. Opin. Cell Biol. 58, 50–60 (2019).
pubmed: 30826604 doi: 10.1016/j.ceb.2019.01.001
Rowland, R. R. et al. Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells. J. Virol. 79, 11507–11512 (2005).
pubmed: 16103202 pmcid: 1193611 doi: 10.1128/JVI.79.17.11507-11512.2005
Timani, K. A. et al. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 114, 23–34 (2005).
pubmed: 15992957 pmcid: 7114095 doi: 10.1016/j.virusres.2005.05.007
Wulan, W. N., Heydet, D., Walker, E. J., Gahan, M. E. & Ghildyal, R. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front. Microbiol. 6, 553 (2015).
pubmed: 26082769 pmcid: 4451415 doi: 10.3389/fmicb.2015.00553
Wurm, T. et al. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J. Virol. 75, 9345–9356 (2001).
pubmed: 11533198 pmcid: 114503 doi: 10.1128/JVI.75.19.9345-9356.2001
Hiscox, J. A. et al. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J. Virol. 75, 506–512 (2001).
pubmed: 11119619 pmcid: 113943 doi: 10.1128/JVI.75.1.506-512.2001
Frieman, M. et al. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J. Virol. 81, 9812–9824 (2007).
pubmed: 17596301 pmcid: 2045396 doi: 10.1128/JVI.01012-07
Caly, L., Druce, J. D., Catton, M. G., Jans, D. A. & Wagstaff, K. M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 178, 104787 (2020).
pubmed: 32251768 doi: 10.1016/j.antiviral.2020.104787
Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108 (2007).
pubmed: 17805299 doi: 10.1038/nature06092
Wang, H. et al. SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway. Cell Res. 18, 290–301 (2008).
pubmed: 18227861 doi: 10.1038/cr.2008.15
Yang, J. et al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl Acad. Sci. USA 107, 21499–21504 (2010).
pubmed: 21098664 pmcid: 3003019 doi: 10.1073/pnas.1016147107
Amente, S., Lania, L. & Majello, B. The histone LSD1 demethylase in stemness and cancer transcription programs. Biochim. Biophys. Acta 1829, 981–986 (2013).
pubmed: 23684752 doi: 10.1016/j.bbagrm.2013.05.002
Pedersen, M. T. & Helin, K. Histone demethylases in development and disease. Trends Cell Biol. 20, 662–671 (2010).
pubmed: 20863703 doi: 10.1016/j.tcb.2010.08.011
Hill, J. M. et al. Inhibition of LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes. Sci. Transl. Med. 6, 265ra169 (2014).
pubmed: 25473037 pmcid: 4416407 doi: 10.1126/scitranslmed.3010643
Sakane, N. et al. Activation of HIV transcription by the viral Tat protein requires a demethylation step mediated by lysine-specific demethylase 1 (LSD1/KDM1). PLoS Pathog. 7, e1002184 (2011).
pubmed: 21876670 pmcid: 3158049 doi: 10.1371/journal.ppat.1002184
Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563 e519 (2018).
pubmed: 29937226 pmcid: 6063761 doi: 10.1016/j.cell.2018.05.052
Wen, P. P. et al. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization. Bioinformatics 32, 3107–3115 (2016).
pubmed: 27354692 doi: 10.1093/bioinformatics/btw377
Satarker, S. & Nampoothiri, M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch. Med. Res. 51, 482–491 (2020).
pubmed: 32493627 pmcid: 7247499 doi: 10.1016/j.arcmed.2020.05.012
Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).
pubmed: 32225175 pmcid: 7328981 doi: 10.1038/s41586-020-2179-y
Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020 94, 7 (2020).
Hofmann, K. TMbase-A database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374, 166 (1993).
Chu, H. et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe 1, e14–e23 (2020).
pubmed: 32835326 pmcid: 7173822 doi: 10.1016/S2666-5247(20)30004-5
Vareille, M., Kieninger, E., Edwards, M. R. & Regamey, N. The airway epithelium: soldier in the fight against respiratory viruses. Clin. Microbiol. Rev. 24, 210–229 (2011).
pubmed: 21233513 pmcid: 3021210 doi: 10.1128/CMR.00014-10
Delgado, O. et al. Multipotent capacity of immortalized human bronchial epithelial cells. PLoS ONE 6, e22023 (2011).
pubmed: 21760947 pmcid: 3131301 doi: 10.1371/journal.pone.0022023
Leung, C., Wadsworth, S. J., Yang, S. J. & Dorscheid, D. R. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media. Am. J. Physiol. Lung Cell Mol. Physiol. 318, L1063–L1073 (2020).
pubmed: 32208929 doi: 10.1152/ajplung.00190.2019
Ravindra, N. G. et al. Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biol. 19, e3001143 (2021).
Lukassen, S. et al. SARS‐CoV‐2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39, e105114 (2020).
pubmed: 32246845 pmcid: 7232010 doi: 10.15252/embj.2020105114
Schmidt, D. M. & McCafferty, D. G. trans-2-Phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry 46, 4408–4416 (2007).
pubmed: 17367163 doi: 10.1021/bi0618621
Harancher, M. R., Packard, J. E., Cowan, S. P., DeLuca, N. A. & Dembowski, J. A. Antiviral properties of the LSD1 inhibitor SP-2509. J. Virol. 94, e00974–20 (2020).
Sehrawat, A. et al. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc. Natl Acad. Sci. USA 115, E4179–E4188 (2018).
pubmed: 29581250 pmcid: 5939079 doi: 10.1073/pnas.1719168115
Tan, A. H. Y. et al. Lysine-specific histone demethylase 1A regulates macrophage polarization and checkpoint molecules in the tumor microenvironment of triple-negative breast cancer. Front. Immunol. 10, 1351 (2019).
pubmed: 31249575 pmcid: 6582666 doi: 10.3389/fimmu.2019.01351
Boulding, T. et al. LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer. Sci. Rep. 8, 73 (2018).
pubmed: 29311580 pmcid: 5758711 doi: 10.1038/s41598-017-17913-x
Han, M. et al. Assessing SARS-CoV-2 RNA levels and lymphocyte/T cell counts in COVID-19 patients revealed initial immune status as a major determinant of disease severity. Med. Microbiol. Immunol. 209, 1–12 (2020).
Tan, L. et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Trans. Target Ther. 5, 1–3 (2020).
Urra, J., Cabrera, C., Porras, L. & Ródenas, I. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients. Clin. Immunol. 217, 108486 (2020).
Zheng, M. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol. Immunol. 17, 533–535 (2020).
pubmed: 32203188 pmcid: 7091858 doi: 10.1038/s41423-020-0402-2
Nicin, L. et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur. Heart J. 41, 1804–1806 (2020).
pubmed: 32293672 doi: 10.1093/eurheartj/ehaa311
Stegbauer, J. et al. Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc. Natl Acad. Sci. USA 106, 14942–14947 (2009).
pubmed: 19706425 pmcid: 2736426 doi: 10.1073/pnas.0903602106
World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance. https://apps.who.int/iris/handle/10665/330893 .
Chu, H. et al. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J. Infect. Dis. 213, 904–914 (2016).
pubmed: 26203058 doi: 10.1093/infdis/jiv380
Nguyen, Ba. A. N., Pogoutse, A., Provart, N. & Moses, A. M. NLStradamus: a simple Hidden Markov model for nuclear localization signal prediction. BMC Bioinform. 10, 202 (2009).
doi: 10.1186/1471-2105-10-202
Jalkanen, S. & Salmi, M. Cell surface monoamine oxidases: enzymes in search of a function. EMBO J. 20, 3893–3901 (2001).
pubmed: 11483492 pmcid: 149172 doi: 10.1093/emboj/20.15.3893
Salmi, M. & Jalkanen, S. Cell-surface enzymes in control of leukocyte trafficking. Nat. Rev. Immunol. 5, 760–771 (2005).
pubmed: 16200079 doi: 10.1038/nri1705
Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).
Tu, W. J. et al. Targeting nuclear LSD1 to reprogram cancer cells and reinvigorate exhausted T cells via a novel LSD1-EOMES switch. Front. Immunol. 11, 1228 (2020).
pubmed: 32612611 pmcid: 7309504 doi: 10.3389/fimmu.2020.01228
Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045 e1039 (2020).
pubmed: 32416070 pmcid: 7227586 doi: 10.1016/j.cell.2020.04.026
Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020).
Pedersen, S. F. & Ho, Y. -C. SARS-CoV-2: a storm is raging. J. Clin. Invest. 130, 2202–2205 (2020).
Kohler, C. A. et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol. Neurobiol. 55, 4195–4206 (2018).
pubmed: 28612257
Strawbridge, R. et al. Inflammation and clinical response to treatment in depression: a meta-analysis. Eur. Neuropsychopharmacol. 25, 1532–1543 (2015).
pubmed: 26169573 doi: 10.1016/j.euroneuro.2015.06.007
Bouhaddou, M. et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 182, 685–712 (2020).
pubmed: 32645325 pmcid: 7321036 doi: 10.1016/j.cell.2020.06.034
Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 459, 1–13 (2020).
Kuba, K. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11, 875–879 (2005).
pubmed: 16007097 pmcid: 7095783 doi: 10.1038/nm1267
Zhang, H., Penninger, J. M., Li, Y., Zhong, N. & Slutsky, A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 46, 586–590 (2020).
pubmed: 32125455 pmcid: 7079879 doi: 10.1007/s00134-020-05985-9
Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).
pubmed: 32031570 pmcid: 7042881 doi: 10.1001/jama.2020.1585
Goronzy, J. J., Fang, F., Cavanagh, M. M., Qi, Q. & Weyand, C. M. Naive T cell maintenance and function in human aging. J. Immunol. 194, 4073–4080 (2015).
pubmed: 25888703 doi: 10.4049/jimmunol.1500046
Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 87, E1–E9 (2000).
pubmed: 10969042 doi: 10.1161/01.RES.87.5.e1
Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000).
pubmed: 10924499 doi: 10.1074/jbc.M002615200
Gao, Y. et al. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat. Cell Biol. 22, 1064–1075 (2020).
pubmed: 32839551 pmcid: 7484128 doi: 10.1038/s41556-020-0562-4
Lin, S.-Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat. Cell Biol. 3, 802–808 (2001).
pubmed: 11533659 doi: 10.1038/ncb0901-802
Gwathmey, T. M., Alzayadneh, E. M., Pendergrass, K. D. & Chappell, M. C. Novel roles of nuclear angiotensin receptors and signaling mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R518–R530 (2012).
pubmed: 22170620 doi: 10.1152/ajpregu.00525.2011
Simpson, J. et al. Respiratory syncytial virus infection promotes necroptosis and HMGB1 release by airway epithelial cells. Am. J. Respir. Crit. Care Med. 201, 1358–1371 (2020).
pubmed: 32105156 doi: 10.1164/rccm.201906-1149OC
La Linn, M., Bellett, A., Parsons, P. & Suhrbier, A. Complete removal of mycoplasma from viral preparations using solvent extraction. J. Virol. Methods 52, 51–54 (1995).
doi: 10.1016/0166-0934(94)00136-5 pubmed: 7539444
Na Pombejra, S., Salemi, M., Phinney, B. S. & Gelli, A. The metalloprotease, Mpr1, engages AnnexinA2 to promote the transcytosis of fungal cells across the blood-brain barrier. Front. Cell Infect. Microbiol. 7, 296 (2017).
pubmed: 28713781 pmcid: 5492700 doi: 10.3389/fcimb.2017.00296
Ozono, S. et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat. Commun. 12, 848 (2021).
pubmed: 33558493 pmcid: 7870668 doi: 10.1038/s41467-021-21118-2
Singh, S. et al. SATPdb: a database of structurally annotated therapeutic peptides. Nucleic Acids Res. 44, D1119–D1126 (2016).
pubmed: 26527728 doi: 10.1093/nar/gkv1114
Ensenat-Waser, R. et al. Direct visualization by confocal fluorescent microscopy of the permeation of myristoylated peptides through the cell membrane. IUBMB Life 54, 33–36 (2002).
pubmed: 12387573 doi: 10.1080/15216540213823
Sutcliffe, E. L. et al. Chromatin-associated protein kinase C-theta regulates an inducible gene expression program and microRNAs in human T lymphocytes. Mol. Cell 41, 704–719 (2011).
pubmed: 21419345 doi: 10.1016/j.molcel.2011.02.030
Wu, F. et al. Nuclear-biased DUSP6 expression is associated with cancer spreading including brain metastasis in triple-negative breast cancer. Int. J. Mol. Sci. 20, 3080 (2019).
Zafar, A. et al. Chromatinized protein kinase C-theta directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells. Mol. Cell Biol. 34, 2961–2980 (2014).
pubmed: 24891615 pmcid: 4135602 doi: 10.1128/MCB.01693-13
Marfori, M. et al. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim. Biophys. Acta 1813, 1562–1577 (2011).
pubmed: 20977914 doi: 10.1016/j.bbamcr.2010.10.013
Teh, T., Tiganis, T. & Kobe, B. Crystallization of importin alpha, the nuclear-import receptor. Acta Crystallogr. D 55, 561–563 (1999).
pubmed: 10089379 doi: 10.1107/S0907444998012943
Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
pubmed: 15915565 doi: 10.1016/j.pep.2005.01.016
Aragao, D. et al. MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Radiat. 25, 885–891 (2018).
pubmed: 29714201 pmcid: 5929359 doi: 10.1107/S1600577518003120
Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D 67, 271–281 (2011).
pubmed: 21460445 pmcid: 3069742 doi: 10.1107/S0907444910048675
Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006).
pubmed: 16369096 doi: 10.1107/S0907444905036693
McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D 63, 32–41 (2007).
pubmed: 17164524 doi: 10.1107/S0907444906045975
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158 pubmed: 15572765
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).
pubmed: 22505256 pmcid: 3322595 doi: 10.1107/S0907444912001308
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635 pubmed: 23104886
DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532 (2012).
pubmed: 22539670 pmcid: 3356847 doi: 10.1093/bioinformatics/bts196
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Yu, G. & He, Q. Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol. Biosyst. 12, 477–479 (2016).
pubmed: 26661513 doi: 10.1039/C5MB00663E
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Larsson, J. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R package version 5.1.0, https://cran.r-project.org/package=eulerr (2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352

Auteurs

Wen Juan Tu (WJ)

Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Robert D McCuaig (RD)

Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Michelle Melino (M)

Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Daniel J Rawle (DJ)

The Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Thuy T Le (TT)

The Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Kexin Yan (K)

The Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Andreas Suhrbier (A)

The Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Rebecca L Johnston (RL)

Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Lambros T Koufariotis (LT)

Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Nicola Waddell (N)

Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Emily M Cross (EM)

School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.

Sofiya Tsimbalyuk (S)

School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.

Amanda Bain (A)

Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Elizabeth Ahern (E)

Department of Medical Oncology, Monash Health, Clayton, VIC, Australia.
School of Clinical Sciences, Monash University, Clayton, VIC, Australia.

Natasha Collinson (N)

Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Simon Phipps (S)

Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Jade K Forwood (JK)

School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.

Nabila Seddiki (N)

U955, Equipe 16, Créteil, France.
Université Paris-Est Créteil, Faculté de médecine, Créteil, France.
Vaccine Research Institute (VRI), Créteil, France.

Sudha Rao (S)

Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. sudha.rao@qimrberghofer.edu.au.

Classifications MeSH