Peripapillary choroidal thickness assessed by spectral-domain optical coherence tomography in normal Japanese.
Choroidal thickness
Glaucoma
Optic nerve head
Peripapillary choroid
Spectral-domain optical coherence tomography
Journal
Japanese journal of ophthalmology
ISSN: 1613-2246
Titre abrégé: Jpn J Ophthalmol
Pays: Japan
ID NLM: 0044652
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
received:
26
10
2020
accepted:
22
04
2021
pubmed:
26
5
2021
medline:
26
8
2021
entrez:
25
5
2021
Statut:
ppublish
Résumé
To investigate peripapillary choroidal thickness (PPCT) in normal Japanese subjects by using spectral-domain optical coherence tomography (SD-OCT) with enhanced depth imaging (EDI) technique and evaluate its association with ocular and systemic factors. Cross-sectional study. This study included 85 eyes of 85 normal Japanese subjects. Normal subjects were defined as those without retinal and optic nerve disorders of any kind. The PPCT was measured at the location of 3.4 mm diameter peripapillary circle centered on the optic nerve head. It was measured as the distance between the retinal pigment epithelium and scleral-choroidal interface at the following six sectors; temporal, supra-temporal, supra-nasal, nasal, infero-nasal, and infero-temporal. Global PPCT was calculated based on these sectorial data. In addition, association between the PPCT and ocular and systemic factors were evaluated. Among the included subjects, 39 (45.9%) were men and mean age was 51.4 ± 17.6 years. The mean global PPCT was 135.8 ± 40.6 µm. The infero-nasal and infero-temporal sectors were significantly thinner than other sectors (all, P < 0.05). In multiple regression analysis, thinner global PPCT was significantly associated with older age (P < 0.0001) and female sex (P = 0.0330) after considering effects of other confounders. This study provided global PPCT and its profile in normal Japanese subjects by using EDI SD-OCT. These results may be used as a reference in the assessment of normal status of the PPCT. The age and sex of the subjects should be considered in interpreting the PPCT data.
Identifiants
pubmed: 34032967
doi: 10.1007/s10384-021-00843-7
pii: 10.1007/s10384-021-00843-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
666-671Subventions
Organisme : Japan Society for the Promotion of Science
ID : 17k11417
Informations de copyright
© 2021. Japanese Ophthalmological Society.
Références
Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969;53:721–48.
doi: 10.1136/bjo.53.11.721
Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–93.
doi: 10.1016/S1350-9462(02)00008-3
Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.
doi: 10.1016/j.ajo.2008.05.032
Hirooka K, Tenkumo K, Fujiwara A, Baba T, Sato S, Shiraga F. Evaluation of peripapillary choroidal thickness in patients with normal-tension glaucoma. BMC Ophthalmol. 2012;12:29.
doi: 10.1186/1471-2415-12-29
Roberts KF, Artes PH, O’Leary N, Reis ASC, Sharpe GP, Hutchison DM, et al. Peripapillary choroidal thickness in healthy controls and patients with focal, diffuse, and sclerotic glaucomatous optic disc damage. Arch Ophthalmol. 2012;130:980–6.
doi: 10.1001/archophthalmol.2012.371
Usui S, Ikuno Y, Miki A, Matsushita K, Yasuno Y, Nishida K. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol. 2012;153:10–6.
doi: 10.1016/j.ajo.2011.05.037
Li L, Bian A, Zhou Q, Mao J. Peripapillary choroidal thickness in both eyes of glaucoma patients with unilateral visual field loss. Am J Ophthalmol. 2013;156:1277–84.
doi: 10.1016/j.ajo.2013.07.011
Lin Z, Huang S, Xie B, Zhong Y. Peripapillary choroidal thickness and open-angle glaucoma: a meta-analysis. J Ophthalmol. 2016;2016:5484568.
pubmed: 27298732
pmcid: 4889846
Zhang Z, Yu M, Wang F, Dai Y, Wu Z. Choroidal thickness and open-angle glaucoma: a meta-analysis and systematic review. J Glaucoma. 2016;25:e446–54.
doi: 10.1097/IJG.0000000000000275
Yang H, Luo H, Gardiner SK, Hardin C, Sharpe GP, Caprioli J, et al. Factors influencing optical coherence tomography peripapillary choroidal thickness: a multicenter study. Invest Ophthalmol Vis Sci. 2019;60:795–806.
doi: 10.1167/iovs.18-25407
Jiang R, Wang YX, Wei WB, Xu L, Jonas JB. Peripapillary choroidal thickness in adult Chinese: the Beijing Eye Study. Invest Ophthalmol Vis Sci. 2015;56:4045–52.
doi: 10.1167/iovs.15-16521
Yamashita T, Terasaki H, Tanaka M, Nakao K, Sakamoto T. Relationship between peripapillary choroidal thickness and degree of tessellation in young healthy eyes. Graefes Arch Clin Exp Ophthalmol. 2020;258:1779–85.
doi: 10.1007/s00417-020-04644-5
Tan CS, Ouyang Y, Ruiz H, Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:261–6.
doi: 10.1167/iovs.11-8782
Gupta P, Jing T, Marziliano P, Baskaran M, Cheung GCM, Lamoureux EL, et al. Peripapillary choroidal thickness assessed using automated choroidal segmentation software in an Asian population. Br J Ophthalmol. 2015;99:920–6.
doi: 10.1136/bjophthalmol-2014-306152
Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH. Larsen’s human embrology. Philadelphia: Elsevier; 2009. p. 602–16.
Yamashita T, Sakamoto T, Yoshihara N, Terasaki H, Tanaka M, Kii Y, et al. Correlations between local peripapillary choroidal thickness and axial length, optic disc tilt, and papillo-macular position in young healthy eyes. PLoS One. 2017;12:e0186453.
Fujiwara A, Shiragami C, Shirakata Y, Manabe S, Izumibata S, Shiraga F. Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes. Jpn J Ophthalmol. 2012;56:230–5.
doi: 10.1007/s10384-012-0128-5
Wakatsuki Y, Shinojima A, Kawamura A, Yuzawa M. Correlation of aging and segmental choroidal thickness measurement using swept source optical coherence tomography in healthy eyes. PLoS One. 2015;10:e0144156.
Iwase T, Yamamoto K, Kobayashi M, Ra E, Murotani K, Terasaki H. What ocular and systemic variables affect choroidal circulation in healthy eyes. Medicine (Baltimore). 2016;95:e5102.
Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol. 2015;159:1123–31.
doi: 10.1016/j.ajo.2015.03.005
Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S, et al. Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology. 2013;120:175–80.
doi: 10.1016/j.ophtha.2012.07.048
Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci. 2011;52:8438–41.
doi: 10.1167/iovs.11-8108
Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T. Refractive errors in an elderly Japanese population: the Tajimi study. Ophthalmology. 2008;115:363–70.
doi: 10.1016/j.ophtha.2007.03.075
Endo H, Kase S, Saito M, Yokoi M, Takahashi M, Ishida S, et al. Choroidal thickness in diabetic patients without diabetic retinopathy: a meta-analysis. Am J Ophthalmol. 2020;218:68–77.
doi: 10.1016/j.ajo.2020.05.036