Strategies for monitoring cell-cell interactions.
Journal
Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
24
08
2020
accepted:
30
03
2021
pubmed:
27
5
2021
medline:
24
8
2021
entrez:
26
5
2021
Statut:
ppublish
Résumé
Multicellular organisms depend on physical cell-cell interactions to control physiological processes such as tissue formation, neurotransmission and immune response. These intercellular binding events can be both highly dynamic in their duration and complex in their composition, involving the participation of many different surface and intracellular biomolecules. Untangling the intricacy of these interactions and the signaling pathways they modulate has greatly improved insight into the biological processes that ensue upon cell-cell engagement and has led to the development of protein- and cell-based therapeutics. The importance of monitoring physical cell-cell interactions has inspired the development of several emerging approaches that effectively interrogate cell-cell interfaces with molecular-level detail. Specifically, the merging of chemistry- and biology-based technologies to deconstruct the complexity of cell-cell interactions has provided new avenues for understanding cell-cell interaction biology and opened opportunities for therapeutic development.
Identifiants
pubmed: 34035514
doi: 10.1038/s41589-021-00790-x
pii: 10.1038/s41589-021-00790-x
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
641-652Références
Yamada, S. & Nelson, W. J. Synapses: sites of cell recognition, adhesion and functional specification. Annu. Rev. Biochem. 76, 267–294 (2007).
pubmed: 17506641
pmcid: 3368613
doi: 10.1146/annurev.biochem.75.103004.142811
Belardi, B., Son, S., Felce, J. H., Dustin, M. L. & Fletcher, D. A. Cell–cell interfaces as specialized compartments directing cell function. Nat. Rev. Mol. Cell Biol. 21, 750–764 (2020).
pubmed: 33093672
doi: 10.1038/s41580-020-00298-7
Darvin, P., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med. 50, 1–11 (2018).
pubmed: 30546008
doi: 10.1038/s12276-018-0191-1
Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T-cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).
pubmed: 31848460
doi: 10.1038/s41571-019-0297-y
Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).
pubmed: 28757604
pmcid: 6312705
doi: 10.1038/nri.2017.74
Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).
pubmed: 27123817
pmcid: 5474291
doi: 10.1038/nmeth.3834
Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).
pubmed: 33168968
doi: 10.1038/s41576-020-00292-x
Wilson, H. V. On some phenomena of coalescence and regeneration in sponges. J. Exp. Zool. 5, 245–258 (1907).
doi: 10.1002/jez.1400050204
Townes, P. L. & Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1955).
doi: 10.1002/jez.1401280105
Moscona, A. & Moscona, H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J. Anat. 86, 287–301 (1952).
pubmed: 12980879
pmcid: 1273752
Davidson, M. W. & Abramowitz, M. in Encyclopedia of Imaging Science and Technology (ed. Hornak, J.) 1106–1141 (Wiley, 2002).
Wollman, A. J. M., Nudd, R., Hedlund, E. G. & Leake, M. C. From Animaculum to single molecules: 300 years of the light microscope. Open Biol. 5, 150019 (2015).
pubmed: 25924631
pmcid: 4422127
doi: 10.1098/rsob.150019
Werner, M., von Wasielewski, R. & Komminoth, P. Antigen retrieval, signal amplification and intensification in immunohistochemistry. Histochem. Cell Biol. 105, 253–260 (1996).
pubmed: 9072182
doi: 10.1007/BF01463928
Stack, E. C., Wang, C. C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014).
pubmed: 25242720
doi: 10.1016/j.ymeth.2014.08.016
Wang, L., Frei, M. S., Salim, A. & Johnsson, K. Small-molecule fluorescent probes for live-cell super-resolution microscopy. J. Am. Chem. Soc. 141, 2770–2781 (2019).
pubmed: 30550714
doi: 10.1021/jacs.8b11134
Specht, E. A., Braselmann, E. & Palmer, A. E. A critical and comparative review of fluorescent tools for live-cell imaging. Annu. Rev. Physiol. 79, 93–117 (2017).
pubmed: 27860833
doi: 10.1146/annurev-physiol-022516-034055
Yap, A. S., Michael, M. & Parton, R. G. Seeing and believing: recent advances in imaging cell–cell interactions. F1000Res. 4, 273 (2015).
pubmed: 26543555
pmcid: 4623898
doi: 10.12688/f1000research.6435.1
Baharlou, H., Canete, N. P., Cunningham, A. L., Harman, A. N. & Patrick, E. Mass cytometry imaging for the study of human diseases—applications and data analysis strategies. Front. Immunol. 10, 2657 (2019).
pubmed: 31798587
pmcid: 6868098
doi: 10.3389/fimmu.2019.02657
Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).
pubmed: 31959985
doi: 10.1038/s41586-019-1876-x
Barteneva, N. S., Fasler-Kan, E. & Vorobjev, I. A. Imaging flow cytometry: coping with heterogeneity in biological systems. J. Histochem. Cytochem. 60, 723–733 (2012).
pubmed: 22740345
pmcid: 3524563
doi: 10.1369/0022155412453052
Burel, J. G. et al. Circulating T cell–monocyte complexes are markers of immune perturbations. eLife 8, e46045 (2019).
pubmed: 31237234
pmcid: 6592685
doi: 10.7554/eLife.46045
Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).
pubmed: 31597962
pmcid: 6861135
doi: 10.1038/s41586-019-1652-y
Groves, J. T. & Dustin, M. L. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods 278, 19–32 (2003).
pubmed: 12957393
doi: 10.1016/S0022-1759(03)00193-5
Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).
pubmed: 9738502
doi: 10.1038/25764
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).
pubmed: 10398592
doi: 10.1126/science.285.5425.221
Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc. Natl Acad. Sci. USA 104, 20296–20301 (2007).
pubmed: 18077330
pmcid: 2154425
doi: 10.1073/pnas.0710258105
Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).
pubmed: 16896339
pmcid: 2700296
doi: 10.1038/nmeth929
Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).
pubmed: 18174397
pmcid: 2633023
doi: 10.1126/science.1153529
Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).
pubmed: 21144999
pmcid: 3057101
doi: 10.1016/j.neuron.2010.11.021
Wu, Y., Kanchanawong, P. & Zaidel-Bar, R. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev. Cell 32, 139–154 (2015).
pubmed: 25600236
doi: 10.1016/j.devcel.2014.12.003
Chamma, I. et al. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat. Commun. 7, 10773 (2016).
pubmed: 26979420
pmcid: 4799371
doi: 10.1038/ncomms10773
Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).
pubmed: 22543348
doi: 10.1038/nmeth.1991
Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).
pubmed: 17060912
doi: 10.1038/nmeth953
Beghein, E. & Gettemans, J. Nanobody technology: a versatile toolkit for microscopic imaging, protein–protein interaction analysis, and protein function exploration. Front. Immunol. 8, 771 (2017).
pubmed: 28725224
pmcid: 5495861
doi: 10.3389/fimmu.2017.00771
Feinberg, E. H. et al. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363 (2008).
pubmed: 18255029
doi: 10.1016/j.neuron.2007.11.030
Kim, J. et al. mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Methods 9, 96–102 (2011).
pubmed: 22138823
pmcid: 3424517
doi: 10.1038/nmeth.1784
Macpherson, L. J. et al. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat. Commun. 6, 10024 (2015).
pubmed: 26635273
doi: 10.1038/ncomms10024
Liu, D. S., Loh, K. H., Lam, S. S., White, K. A. & Ting, A. Y. Imaging trans-cellular neurexin–neuroligin interactions by enzymatic probe ligation. PLoS ONE 8, e52823 (2013).
pubmed: 23457442
pmcid: 3573046
doi: 10.1371/journal.pone.0052823
Martell, J. D. et al. A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. Nat. Biotechnol. 34, 774–780 (2016).
pubmed: 27240195
pmcid: 4942342
doi: 10.1038/nbt.3563
Carpenter, M. A. et al. Protein proximity observed using fluorogen activating protein and dye activated by proximal anchoring (FAP–DAPA) system. ACS Chem. Biol. 15, 2433–2443 (2020).
pubmed: 32786268
pmcid: 8796707
doi: 10.1021/acschembio.0c00419
Stein, J. V. & Gonzalez, S. F. Dynamic intravital imaging of cell–cell interactions in the lymph node. J. Allergy Clin. Immunol. 139, 12–20 (2017).
pubmed: 28065277
doi: 10.1016/j.jaci.2016.11.008
Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).
pubmed: 12016203
doi: 10.1126/science.1070051
Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D. & Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl Acad. Sci. USA 101, 998–1003 (2004).
pubmed: 14722354
pmcid: 327133
doi: 10.1073/pnas.0306407101
Pasqual, G. et al. Monitoring T cell–dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).
pubmed: 29342141
pmcid: 5853129
doi: 10.1038/nature25442
Ge, Y. et al. Enzyme-mediated intercellular proximity labeling for detecting cell–cell interactions. J. Am. Chem. Soc. 141, 1833–1837 (2019).
pubmed: 30676735
doi: 10.1021/jacs.8b10286
Liu, Q. et al. A proximity-tagging system to identify membrane protein–protein interactions. Nat. Methods 15, 715–722 (2018).
pubmed: 30104635
doi: 10.1038/s41592-018-0100-5
Liu, Z. L. et al. Detecting tumor antigen-specific T cells via interaction-dependent fucosyl-biotinylation. Cell 183, 1117–1133 (2020).
pubmed: 33096019
pmcid: 7669731
doi: 10.1016/j.cell.2020.09.048
Piersimoni, L. & Sinz, A. Cross-linking/mass spectrometry at the crossroads. Anal. Bioanal. Chem. 412, 5981–5987 (2020).
pubmed: 32472143
pmcid: 7442761
doi: 10.1007/s00216-020-02700-x
Gonzalez-Lozano, M. A. et al. Stitching the synapse: cross-linking mass spectrometry into resolving synaptic protein interactions. Sci. Adv. 6, eaax5783 (2020).
pubmed: 32128395
pmcid: 7030922
doi: 10.1126/sciadv.aax5783
Cho, K. F. et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15, 3971–3999 (2020).
pubmed: 33139955
doi: 10.1038/s41596-020-0399-0
Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).
pubmed: 33432242
doi: 10.1038/s41592-020-01010-5
Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, E2453–E2461 (2014).
pubmed: 24927568
pmcid: 4066523
doi: 10.1073/pnas.1406459111
Martell, J. D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30, 1143–1148 (2012).
pubmed: 23086203
pmcid: 3699407
doi: 10.1038/nbt.2375
Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).
pubmed: 23371551
pmcid: 3916822
doi: 10.1126/science.1230593
Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016).
pubmed: 27565350
pmcid: 5167540
doi: 10.1016/j.cell.2016.07.041
Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).
pubmed: 22412018
pmcid: 3308701
doi: 10.1083/jcb.201112098
Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).
pubmed: 30125270
pmcid: 6126969
doi: 10.1038/nbt.4201
Shafraz, O., Xie, B., Yamada, S. & Sivasankar, S. Mapping transmembrane binding partners for E-cadherin ectodomains. Proc. Natl Acad. Sci. USA 117, 31157–31165 (2020).
pubmed: 33229577
pmcid: 7733791
doi: 10.1073/pnas.2010209117
Kwak, C. et al. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proc. Natl Acad. Sci. USA 117, 12109–12120 (2020).
pubmed: 32414919
pmcid: 7275737
doi: 10.1073/pnas.1916584117
Cho, K. F. et al. Split-TurboID enables contact-dependent proximity labeling in cells. Proc. Natl Acad. Sci. USA 117, 12143–12154 (2020).
pubmed: 32424107
pmcid: 7275672
doi: 10.1073/pnas.1919528117
Samavarchi-Tehrani, P., Samson, R. & Gingras, A. C. Proximity dependent biotinylation: key enzymes and adaptation to proteomics approaches. Mol. Cell Proteom. 19, 757–773 (2020).
doi: 10.1074/mcp.R120.001941
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).
pubmed: 23509883
pmcid: 4028850
doi: 10.1021/cr300503r
Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).
pubmed: 32139536
pmcid: 7336666
doi: 10.1126/science.aay4106
Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).
pubmed: 28783722
pmcid: 5870757
doi: 10.1038/nature23477
Vredevoogd, D. W. et al. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity threshold. Cell 178, 585–599 (2019).
pubmed: 31303383
doi: 10.1016/j.cell.2019.06.014
Kula, T. et al. T-Scan: a genome-wide method for the systematic discovery of T cell epitopes. Cell 178, 1016–1028 (2019).
pubmed: 31398327
pmcid: 6939866
doi: 10.1016/j.cell.2019.07.009
Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).
pubmed: 26830878
pmcid: 4752866
doi: 10.1016/j.cell.2016.01.012
Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell–cell signaling. Science 361, 156–162 (2018).
pubmed: 29853554
pmcid: 6492944
doi: 10.1126/science.aat0271
Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167, 419–432 (2016).
pubmed: 27693353
pmcid: 5072533
doi: 10.1016/j.cell.2016.09.011
Tang, R. et al. A versatile system to record cell–cell interactions. eLife 9, e61080 (2020).
pubmed: 33025906
pmcid: 7682987
doi: 10.7554/eLife.61080
Talay, M. et al. Transsynaptic mapping of second-order taste neurons in flies by trans-Tango. Neuron 96, 783–795 (2017).
pubmed: 29107518
pmcid: 5693608
doi: 10.1016/j.neuron.2017.10.011
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).
pubmed: 32433532
pmcid: 7238960
doi: 10.1038/s41577-020-0306-5
Kontermann, R. E. & Brinkmann, U. Bispecific antibodies. Drug Discov. Today 20, 838–847 (2015).
pubmed: 25728220
doi: 10.1016/j.drudis.2015.02.008
Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).
pubmed: 31175342
doi: 10.1038/s41573-019-0028-1
Labanieh, L., Majzner, R. G. & Mackall, C. L. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2, 377–391 (2018).
pubmed: 31011197
doi: 10.1038/s41551-018-0235-9
Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).
pubmed: 29743717
doi: 10.1038/s41577-018-0014-6
Twumasi-Boateng, K., Pettigrew, J. L., Kwok, Y. Y. E., Bell, J. C. & Nelson, B. H. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer 18, 419–432 (2018).
pubmed: 29695749
doi: 10.1038/s41568-018-0009-4
Dura, B. et al. Longitudinal multiparameter assay of lymphocyte interactions from onset by microfluidic cell pairing and culture. Proc. Natl Acad. Sci. USA 113, E3599–E3608 (2016).
pubmed: 27303033
pmcid: 4932925
doi: 10.1073/pnas.1515364113
Ben-Moshe, S. et al. Spatial sorting enables comprehensive characterization of liver zonation. Nat. Metab. 1, 899–911 (2019).
pubmed: 31535084
pmcid: 6751089
doi: 10.1038/s42255-019-0109-9
Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167 (2018).
pubmed: 30270040
doi: 10.1016/j.cell.2018.08.063
Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).
pubmed: 32152598
doi: 10.1038/s41587-020-0442-2
Williams, J. Z. et al. Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science 370, 1099–1104 (2020).
pubmed: 33243890
pmcid: 8054651
doi: 10.1126/science.abc6270
Lajoie, M. J. et al. Designed protein logic to target cells with precise combinations of surface antigens. Science 369, 1637–1643 (2020).
pubmed: 32820060
pmcid: 8085813
doi: 10.1126/science.aba6527