Protein-assisted scalable mechanochemical exfoliation of few-layer biocompatible graphene nanosheets.
exfoliation
graphene nanosheets
mechanochemical
Journal
Royal Society open science
ISSN: 2054-5703
Titre abrégé: R Soc Open Sci
Pays: England
ID NLM: 101647528
Informations de publication
Date de publication:
31 Mar 2021
31 Mar 2021
Historique:
entrez:
26
5
2021
pubmed:
27
5
2021
medline:
27
5
2021
Statut:
epublish
Résumé
A facile method to produce few-layer graphene (FLG) nanosheets is developed using protein-assisted mechanical exfoliation. The predominant shear forces that are generated in a planetary ball mill facilitate the exfoliation of graphene layers from graphite flakes. The process employs a commonly known protein, bovine serum albumin (BSA), which not only acts as an effective exfoliation agent but also provides stability by preventing restacking of the graphene layers. The latter is demonstrated by the excellent long-term dispersibility of exfoliated graphene in an aqueous BSA solution, which exemplifies a common biological medium. The development of such potentially scalable and toxin-free methods is critical for producing cost-effective biocompatible graphene, enabling numerous possible biomedical and biological applications. A methodical study was performed to identify the effect of time and varying concentrations of BSA towards graphene exfoliation. The fabricated product has been characterized using Raman spectroscopy, powder X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The BSA-FLG dispersion was then placed in media containing Astrocyte cells to check for cytotoxicity. It was found that lower concentrations of BSA-FLG dispersion had only minute cytotoxic effects on the Astrocyte cells.
Identifiants
pubmed: 34035934
doi: 10.1098/rsos.200911
pii: rsos200911
pmc: PMC8101280
doi:
Banques de données
figshare
['10.6084/m9.figshare.c.5356029']
Dryad
['10.5061/dryad.sqv9s4n1n']
Types de publication
Journal Article
Langues
eng
Pagination
200911Informations de copyright
© 2021 The Authors.
Références
Nano Lett. 2017 May 10;17(5):3297-3301
pubmed: 28383278
Chem Rev. 2010 Jan;110(1):132-45
pubmed: 19610631
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3
pubmed: 16027370
Nanoscale. 2013 Jan 7;5(1):38-51
pubmed: 23160190
Chem Commun (Camb). 2014 Aug 7;50(61):8402-4
pubmed: 24948081
Anal Chem. 2012 May 15;84(10):4622-7
pubmed: 22497579
J Adv Res. 2017 May;8(3):209-215
pubmed: 28228971
Nanoscale. 2016 Oct 14;8(40):17581-17597
pubmed: 27714159
Biosensors (Basel). 2019 Sep 20;9(4):
pubmed: 31547138
Angew Chem Int Ed Engl. 2010 Jul 5;49(29):4946-9
pubmed: 20533486
ACS Nano. 2010 Nov 23;4(11):6297-302
pubmed: 21090813
Nano Lett. 2011 Aug 10;11(8):3190-6
pubmed: 21696186
Science. 2004 Oct 22;306(5696):666-9
pubmed: 15499015
Acta Neuropathol. 2010 Jan;119(1):7-35
pubmed: 20012068
Nanoscale. 2011 Jun;3(6):2461-4
pubmed: 21562671
Nat Protoc. 2018 Mar;13(3):495-506
pubmed: 29446772
Chem Commun (Camb). 2011 Oct 21;47(39):10936-8
pubmed: 21909539
Nano Lett. 2009 Jan;9(1):30-5
pubmed: 19046078
Nat Nanotechnol. 2008 Sep;3(9):563-8
pubmed: 18772919
J Am Chem Soc. 2012 Oct 31;134(43):17896-9
pubmed: 23075388
Nanoscale. 2015 Apr 21;7(15):6436-43
pubmed: 25779762
Science. 2006 May 26;312(5777):1191-6
pubmed: 16614173
Science. 1991 Sep 20;253(5026):1397-9
pubmed: 17793480
Phys Rev Lett. 2006 Nov 3;97(18):187401
pubmed: 17155573
Nat Commun. 2018 Apr 20;9(1):1577
pubmed: 29679022
Biosensors (Basel). 2020 Jan 17;10(1):
pubmed: 31963492
Nature. 2005 Nov 10;438(7065):197-200
pubmed: 16281030
Nano Lett. 2008 Aug;8(8):2458-62
pubmed: 18630972
Environ Health Perspect. 2009 Dec;117(12):1803-8
pubmed: 20049196
Science. 2008 Jul 18;321(5887):385-8
pubmed: 18635798
Nanoscale. 2016 Aug 25;8(34):15389-413
pubmed: 27518874
Annu Rev Phys Chem. 2008;59:659-83
pubmed: 18393682