Apoptosis and cell proliferation during metamorphosis of the planula larva of Clytia hemisphaerica (Hydrozoa, Cnidaria).
apoptosis
cnidaria
interstitial stem cells
metamorphosis
planula
polarity
polyps
Journal
Developmental dynamics : an official publication of the American Association of Anatomists
ISSN: 1097-0177
Titre abrégé: Dev Dyn
Pays: United States
ID NLM: 9201927
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
revised:
19
05
2021
received:
22
07
2020
accepted:
20
05
2021
pubmed:
27
5
2021
medline:
30
3
2022
entrez:
26
5
2021
Statut:
ppublish
Résumé
Metamorphosis in marine species is characterized by profound changes at the ecophysiological, morphological, and cellular levels. The cnidarian Clytia hemisphaerica exhibits a triphasic life cycle that includes a planula larva, a colonial polyp, and a sexually reproductive medusa. Most studies so far have focused on the embryogenesis of this species, whereas its metamorphosis has been only partially studied. We investigated the main morphological changes of the planula larva of Clytia during the metamorphosis, and the associated cell proliferation and apoptosis. Based on our observations of planulae at successive times following artificial metamorphosis induction using GLWamide, we subdivided the Clytia's metamorphosis into a series of eight morphological stages occurring during a pre-settlement phase (from metamorphosis induction to planula ready for settlement) and the post-settlement phase (from planula settlement to primary polyp). Drastic morphological changes prior to definitive adhesion to the substrate were accompanied by specific patterns of stem-cell proliferation as well as apoptosis in both ectoderm and endoderm. Further waves of apoptosis occurring once the larva has settled were associated with morphogenesis of the primary polyp. Clytia larval metamorphosis is characterized by distinct patterns of apoptosis and cell proliferation during the pre-settlement phase and the settled planula-to-polyp transformation.
Sections du résumé
BACKGROUND
Metamorphosis in marine species is characterized by profound changes at the ecophysiological, morphological, and cellular levels. The cnidarian Clytia hemisphaerica exhibits a triphasic life cycle that includes a planula larva, a colonial polyp, and a sexually reproductive medusa. Most studies so far have focused on the embryogenesis of this species, whereas its metamorphosis has been only partially studied.
RESULTS
We investigated the main morphological changes of the planula larva of Clytia during the metamorphosis, and the associated cell proliferation and apoptosis. Based on our observations of planulae at successive times following artificial metamorphosis induction using GLWamide, we subdivided the Clytia's metamorphosis into a series of eight morphological stages occurring during a pre-settlement phase (from metamorphosis induction to planula ready for settlement) and the post-settlement phase (from planula settlement to primary polyp). Drastic morphological changes prior to definitive adhesion to the substrate were accompanied by specific patterns of stem-cell proliferation as well as apoptosis in both ectoderm and endoderm. Further waves of apoptosis occurring once the larva has settled were associated with morphogenesis of the primary polyp.
CONCLUSION
Clytia larval metamorphosis is characterized by distinct patterns of apoptosis and cell proliferation during the pre-settlement phase and the settled planula-to-polyp transformation.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1739-1758Informations de copyright
© 2021 American Association for Anatomy.
Références
Kriegstein AR, Castellucci V, Kandel ER. Metamorphosis of Aplysia californica in laboratory culture. Proc Natl Acad Sci U S A. 1974;71(9):3654-3658. https://doi.org/10.1073/pnas.71.9.3654.
Lockshin RA, Zakeri Z. Programmed cell death: early changes in metamorphosing cells. Biochem Cell Biol Biochim Biol Cell. 1994;72(11-12):589-596. https://doi.org/10.1139/o94-078.
Müller WA, Leitz T. Metamorphosis in the Cnidaria. Can J Zool. 2002;80(10):1755-1771. https://doi.org/10.1139/z02-130.
Karaiskou A, Swalla BJ, Sasakura Y, Chambon J-P. Metamorphosis in solitary ascidians. Genes N Y N 2000. 2015;53(1):34-47. https://doi.org/10.1002/dvg.22824.
Faunes F, Larraín J. Conservation in the involvement of heterochronic genes and hormones during developmental transitions. Dev Biol. 2016;416(1):3-17. https://doi.org/10.1016/j.ydbio.2016.06.013.
Gröger H, Schmid V. Larval development in Cnidaria: a connection to Bilateria? Genes N Y N 2000. 2001;29(3):110-114. https://doi.org/10.1002/gene.1013.
Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ. Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol. 2009;69(4):235-254. https://doi.org/10.1002/dneu.20698.
Marlow H, Tosches MA, Tomer R, et al. Larval body patterning and apical organs are conserved in animal evolution. BMC Biol. 2014;12:7. https://doi.org/10.1186/1741-7007-12-7.
Range RC, Angerer RC, Angerer LM. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos. PLoS Biol. 2013;11(1):e1001467. https://doi.org/10.1371/journal.pbio.1001467.
Range R. Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genes N Y N 2000. 2014;52(3):222-234. https://doi.org/10.1002/dvg.22759.
Range RC. Canonical and non-canonical Wnt signaling pathways define the expression domains of frizzled 5/8 and frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos. Dev Biol. 2018;444(2):83-92. https://doi.org/10.1016/j.ydbio.2018.10.003.
Range RC, Wei Z. Correction: an anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo. Development. 2017;144(8):1579. https://doi.org/10.1242/dev.152140.
Funayama N, Frank U. Meeting report on “at the roots of Bilaterian complexity: insights from early emerging metazoans,” Tutzing (Germany) September 16-19, 2019. BioEssays News Rev Mol Cell Dev Biol. 2020;42(2):e1900236. https://doi.org/10.1002/bies.201900236.
Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol. 2006;55(1):97-115. https://doi.org/10.1080/10635150500433615.
Houliston E, Momose T, Manuel M. Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends Genet TIG. 2010;26(4):159-167. https://doi.org/10.1016/j.tig.2010.01.008.
Zapata F, Goetz FE, Smith SA, et al. Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One. 2015;10(10):e0139068. https://doi.org/10.1371/journal.pone.0139068.
Kayal M, Lenihan HS, Brooks AJ, Holbrook SJ, Schmitt RJ, Kendall BE. Predicting coral community recovery using multi-species population dynamics models. Ecol Lett. 2018;21(12):1790-1799. https://doi.org/10.1111/ele.13153.
Leclère L, Horin C, Chevalier S, et al. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol. 2019;3(5):801-810. https://doi.org/10.1038/s41559-019-0833-2.
Momose T, De Cian A, Shiba K, Inaba K, Giovannangeli C, Concordet J-P. High doses of CRISPR/Cas9 ribonucleoprotein efficiently induce gene knockout with low mosaicism in the hydrozoan Clytia hemisphaerica through microhomology-mediated deletion. Sci Rep. 2018;8(1):11734. https://doi.org/10.1038/s41598-018-30188-0.
Leclère L, Copley RR, Momose T, Houliston E. Hydrozoan insights in animal development and evolution. Curr Opin Genet Dev. 2016;39:157-167. https://doi.org/10.1016/j.gde.2016.07.006.
Elie M. In: Hölder A, ed. Embryologische Studien an Medusen: Ein Beitrag Zur Genealogie Der Primitiv-Organe; Vienna, Austria: A. Hölder; 1886:1-174. https://doi.org/10.5962/bhl.title.5982.
Kraus YA, Markov AV. The gastrulation in Cnidaria: a key to understanding phylogeny or the chaos of secondary modifications? Zh Obshch Biol. 2016;77(2):83-105.
Kraus Y, Chevalier S, Houliston E. Cell shape changes during larval body plan development in Clytia hemisphaerica. bioRxiv. 2019:864223. doi:https://doi.org/10.1101/864223
Byrum CA. An analysis of hydrozoan gastrulation by unipolar ingression. Dev Biol. 2001;240(2):627-640. https://doi.org/10.1006/dbio.2001.0484.
Chevalier S, Martin A, Leclère L, Amiel A, Houliston E. Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica. Dev Genes Evol. 2006;216(11):709-720. https://doi.org/10.1007/s00427-006-0103-6.
Momose T, Derelle R, Houliston E. A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development. 2008;135(12):2105-2113. https://doi.org/10.1242/dev.021543.
Chiori R, Jager M, Denker E, et al. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PloS One. 2009;4(1):e4231. https://doi.org/10.1371/journal.pone.0004231.
Amiel A, Houliston E. Three distinct RNA localization mechanisms contribute to oocyte polarity establishment in the cnidarian Clytia hemisphaerica. Dev Biol. 2009;327(1):191-203. https://doi.org/10.1016/j.ydbio.2008.12.007.
Leclère L, Jager M, Barreau C, et al. Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol. 2012;364(2):236-248. https://doi.org/10.1016/j.ydbio.2012.01.018.
Martin VJ, Archer WE. Migration of interstitial cells and their derivatives in a hydrozoan planula. Dev Biol. 1986;116(2):486-496. https://doi.org/10.1016/0012-1606(86)90149-1.
Martin VJ, Archer WE. Stages of larval development and stem cell population changes during metamorphosis of a hydrozoan planula. Biol Bull. 1997;192(1):41-52. https://doi.org/10.2307/1542574.
Watanabe H, Hoang VT, Mättner R, Holstein TW. Immortality and the base of multicellular life: lessons from cnidarian stem cells. Semin Cell Dev Biol. 2009;20(9):1114-1125. https://doi.org/10.1016/j.semcdb.2009.09.008.
Plickert G, Kroiher M, Munck A. Cell proliferation and early differentiation during embryonic development and metamorphosis of Hydractinia echinata. Development. 1988;103(4):795-803.
Kroiher M, Plickert G, Müller WA. Pattern of cell proliferation in embryogenesis and planula development Ofhydractinia echinata predicts the postmetamorphic body pattern. Rouxs Arch Dev Biol off Organ EDBO. 1990;199(3):156-163. https://doi.org/10.1007/BF01681488.
Martin V, Chia F-S, Koss R. A fine structural study of metamorphosis of the hydrozoan Mitrocomella polydiademata. J Morphol. 1983;176(3):261-287. https://doi.org/10.1002/jmor.1051760303.
Rebscher N, Volk C, Teo R, Plickert G. The germ plasm component vasa allows tracing of the interstitial stem cells in the cnidarian Hydractinia echinata. Dev Dyn. 2008;237(6):1736-1745. https://doi.org/10.1002/dvdy.21562.
Seipp S, Schmich J, Leitz T. Apoptosis- -a death-inducing mechanism tightly linked with morphogenesis in Hydractina echinata (Cnidaria, Hydrozoa). Development. 2001;128(23):4891-4898.
Yuan D, Nakanishi N, Jacobs DK, Hartenstein V. Embryonic development and metamorphosis of the scyphozoan Aurelia. Dev Genes Evol. 2008;218(10):525-539. https://doi.org/10.1007/s00427-008-0254-8.
Seipp S, Wittig K, Stiening B, Böttger A, Leitz T. Metamorphosis of Hydractinia echinata (Cnidaria) is caspase-dependent. Int J Dev Biol. 2006;50(1):63-70. https://doi.org/10.1387/ijdb.052012ss.
Wittig K, Kasper J, Seipp S, Leitz T. Evidence for an instructive role of apoptosis during the metamorphosis of Hydractinia echinata (Hydrozoa). Zoology (Jena). 2011;114(1):11-22. https://doi.org/10.1016/j.zool.2010.09.004.
Freeman G. The role of polarity in the development of the hydrozoan planula larva. Wilhelm Rouxs Arch Dev Biol. 1981;190(3):168-184. https://doi.org/10.1007/BF00867804.
Schmich J, Trepel S, Leitz T. The role of GLWamides in metamorphosis of Hydractinia echinata. Dev Genes Evol. 1998;208(5):267-273.
Lechable M, Jan A, Weissbourd B, et al. An improved whole life cycle culture protocol for the hydrozoan genetic model Clytia hemisphaerica. bioRxiv. 2019:852632. doi:https://doi.org/10.1101/852632
Takahashi T, Takeda N. Insight into the molecular and functional diversity of cnidarian neuropeptides. Int J Mol Sci. 2015;16(2):2610-2625. https://doi.org/10.3390/ijms16022610.
Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. The influence of bacteria on animal metamorphosis. Annu Rev Microbiol. 2020;74:137-158. https://doi.org/10.1146/annurev-micro-011320-012753.
Iwao K, Fujisawa T, Hatta M. A cnidarian neuropeptide of the GLWamide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reefs. 2002;21(2):127-129. https://doi.org/10.1007/s00338-002-0219-8.
Erwin PM, Szmant AM. Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide. Coral Reefs. 2010;29(4):929-939. https://doi.org/10.1007/s00338-010-0634-1.
LEITZ T. Induction of settlement and metamorphosis of cnidarian larvae: signals and signal transduction. Invertebr Reprod Dev. 1997;31(1-3):109-122. https://doi.org/10.1080/07924259.1997.9672569.
He J, Dai Q, Qi Y, et al. Bacterial nucleobases synergistically induce larval settlement and metamorphosis in the invasive mussel Mytilopsis sallei. Appl Environ Microbiol. 2019;85(16). https://doi.org/10.1128/AEM.01039-19.
Pennati R, Dell'Anna A, Pagliara P, Scarì G, Piraino S, De Bernardi F. Neural system reorganization during metamorphosis in the planula larva of Clava multicornis (Hydrozoa, Cnidaria). Zoomorphology. 2013;132(3):227-237. https://doi.org/10.1007/s00435-013-0188-1.
Martin VJ, Chia F-S. Fine structure of a Scyphozoan planula. Cassiopeia Xamachana Biol Bull. 1982;163(2):320-328. https://doi.org/10.2307/1541269.
Weis VM, Keene DR, Buss LW. Biology of hydractiniid hydroids. 4. Ultrastructure of the planula of Hydractinia echinata. Biol Bull. 1985;168(3):403-418. https://doi.org/10.2307/1541521.
Kraus Y, Chevalier S, Houliston E. Cell shape changes during larval body plan development in Clytia hemisphaerica. Dev Biol. 2020;468(1-2):59-79. https://doi.org/10.1016/j.ydbio.2020.09.013.
Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-257. https://doi.org/10.1038/bjc.1972.33.
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486-541. https://doi.org/10.1038/s41418-017-0012-4.
Krasovec G, Robine K, Quéinnec E, Karaiskou A, Chambon JP. Ci-hox12 tail gradient precedes and participates in the control of the apoptotic-dependent tail regression during Ciona larva metamorphosis. Dev Biol. 2019;448(2):237-246. https://doi.org/10.1016/j.ydbio.2018.12.010.
Pazdera TM, Janardhan P, Minden JS. Patterned epidermal cell death in wild-type and segment polarity mutant drosophila embryos. Development. 1998;125(17):3427-3436.
Wang H-S, Nie X, Wu R-B, et al. Downregulation of human Wnt3 in gastric cancer suppresses cell proliferation and induces apoptosis. OncoTargets Ther. 2016;9:3849-3860. https://doi.org/10.2147/OTT.S101782.
Stumpf M, Will B, Wittig K, et al. An organizing region in metamorphosing hydrozoan planula larvae- -stimulation of axis formation in both larval and in adult tissue. Int J Dev Biol. 2010;54(5):795-802. https://doi.org/10.1387/ijdb.082738ms.
Chera S, Ghila L, Dobretz K, et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell. 2009;17(2):279-289. https://doi.org/10.1016/j.devcel.2009.07.014.
Westfall JA. The differentiation of nematocysts and associated structures in the cnidaria. Zeitschrift für Zellforschung. 1966;75(2):381-403. https://doi.org/10.1007/BF00336871.
Tamarin A, Lewis P, Askey J. The structure and formation of the byssus attachment plaque in Mytilus. J Morphol. 1976;149(2):199-221. https://doi.org/10.1002/jmor.1051490205.
Walker G. The adhesion of barnacles. J Adhes. 1981;12(1):51-58. https://doi.org/10.1080/00218468108071188.
Pottin K, Hyacinthe C, Rétaux S. Conservation, development, and function of a cement gland-like structure in the fish Astyanax mexicanus. Proc Natl Acad Sci U S A. 2010;107(40):17256-17261. https://doi.org/10.1073/pnas.1005035107.
Price HL, Gohad NV, Mount AS, Wendt DE. Investigation of larval settlement pathways in the marine bryozoan, Bugula neritina. J Exp Mar Biol Ecol. 2017;486:69-76. https://doi.org/10.1016/j.jembe.2016.09.017.
Chia F-S, Koss R. Fine structural studies of the nervous system and the apical organ in the planula larva of the sea anemone Anthopleura elegantissima. J Morphol. 1979;160(3):275-297. https://doi.org/10.1002/jmor.1051600303.
Sinigaglia C, Busengdal H, Lerner A, Oliveri P, Rentzsch F. Molecular characterization of the apical organ of the anthozoan Nematostella vectensis. Dev Biol. 2015;398(1):120-133. https://doi.org/10.1016/j.ydbio.2014.11.019.
Nakanishi N, Renfer E, Technau U, Rentzsch F. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development. 2012;139(2):347-357. https://doi.org/10.1242/dev.071902.
Nakanishi N, Yuan D, Jacobs DK, Hartenstein V. Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa). Dev Genes Evol. 2008;218(10):511-524. https://doi.org/10.1007/s00427-008-0239-7.
Seipp S, Schmich J, Will B, Schetter E, Plickert G, Leitz T. Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa). Invertebr Neurosci IN. 2010;10(2):77-91. https://doi.org/10.1007/s10158-010-0109-7.
Piraino S, Zega G, Di Benedetto C, et al. Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria). J Comp Neurol. 2011;519(10):1931-1951. https://doi.org/10.1002/cne.22614.
Zang H, Nakanishi N. Expression analysis of cnidarian-specific neuropeptides in a sea anemone unveils an apical-organ-associated nerve net that disintegrates at metamorphosis. Front Endocrinol. 2020;11:63. https://doi.org/10.3389/fendo.2020.00063.
Attenborough RMF, Hayward DC, Wiedemann U, Forêt S, Miller DJ, Ball EE. Expression of the neuropeptides RFamide and LWamide during development of the coral Acropora millepora in relation to settlement and metamorphosis. Dev Biol. 2019;446(1):56-67. https://doi.org/10.1016/j.ydbio.2018.11.022.
Lockshin RA, Williams CM. Programmed cell death-II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1964;10(4):643-649. https://doi.org/10.1016/0022-1910(64)90034-4.
Accordi F, Chimenti C. Programmed cell death in the pancreas of Bufo bufo during metamorphosis. J Anat. 2001;199(Pt 4):419-427. https://doi.org/10.1046/j.1469-7580.2001.19940419.x.
Chambon J-P, Soule J, Pomies P, et al. Tail regression in Ciona intestinalis (Prochordate) involves a caspase-dependent apoptosis event associated with ERK activation. Development. 2002;129(13):3105-3114.
Yang B, Li L, Pu F, You W, Huang H, Ke C. Molecular cloning of two molluscan caspases and gene functional analysis during Crassostrea angulata (Fujian oyster) larval metamorphosis. Mol Biol Rep. 2015;42(5):963-975. https://doi.org/10.1007/s11033-014-3833-y.
Genikhovich G, Technau U. On the evolution of bilaterality. Development. 2017;144(19):3392-3404. https://doi.org/10.1242/dev.141507.
Jager M, Quéinnec E, Le Guyader H, Manuel M. Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica. EvoDevo. 2011;2:12. https://doi.org/10.1186/2041-9139-2-12.
Condamine T, Jager M, Leclère L, et al. Molecular characterisation of a cellular conveyor belt in Clytia medusae. Dev Biol. 2019;456(2):212-225. https://doi.org/10.1016/j.ydbio.2019.09.001.