Biological and methodological factors affecting
cardiorespiratory fitness
endurance training
exercise prescription
response variability
Journal
Experimental physiology
ISSN: 1469-445X
Titre abrégé: Exp Physiol
Pays: England
ID NLM: 9002940
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
17
03
2021
accepted:
07
05
2021
pubmed:
27
5
2021
medline:
1
4
2022
entrez:
26
5
2021
Statut:
ppublish
Résumé
What is the topic of this review? Biological and methodological factors associated with the variable changes in cardiorespiratory fitness in response to endurance training. What advances does it highlight? Several biological and methodological factors exist that each contribute, to a given extent, to response variability. Notably, prescribing exercise intensity relative to physiological thresholds reportedly increases cardiorespiratory fitness response rates compared to when prescribed relative to maximum physiological values. As threshold-based approaches elicit more homogeneous acute physiological responses among individuals, when repeated over time, these uniform responses may manifest as more homogeneous chronic adaptations thereby reducing response variability. Changes in cardiorespiratory fitness (CRF) in response to endurance training (ET) exhibit large variations, possibly due to a multitude of biological and methodological factors. It is acknowledged that ∼20% of individuals may not achieve meaningful increases in CRF in response to ET. Genetics, the most potent biological contributor, has been shown to explain ∼50% of response variability, whilst age, sex and baseline CRF appear to explain a smaller proportion. Methodological factors represent the characteristics of the ET itself, including the type, volume and intensity of exercise, as well as the method used to prescribe and control exercise intensity. Notably, methodological factors are modifiable and, upon manipulation, alter response rates to ET, eliciting increases in CRF regardless of an individual's biological predisposition. Particularly, prescribing exercise intensity relative to a physiological threshold (e.g., ventilatory threshold) is shown to increase CRF response rates compared to when intensity is anchored relative to a maximum physiological value (e.g., maximum heart rate). It is, however, uncertain whether the increased response rates are primarily attributable to reduced response variability, greater mean changes in CRF or both. Future research is warranted to elucidate whether more homogeneous chronic adaptations manifest over time among individuals, as a result of exposure to more homogeneous exercise stimuli elicited by threshold-based practices.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1410-1424Informations de copyright
© 2021 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Références
American College of Sports Medicine. (2017). ACSM's guidelines for exercise testing and prescription, 10th ed. Baltimore, Philadelphia: Lippincott Williams & Wilkins.
Ansdell, P., Brownstein, C. G., Škarabot, J., Hicks, K. M., Howatson, G., Thomas, K., Hunter S. K., & Goodall, S. (2019). Sex differences in fatigability and recovery relative to the intensity-duration relationship. Journal of Physiology, 597(23), 5577-5595. https://doi.org/10.1113/JP278699
Ansdell, P., Thomas, K., Hicks, K. M., Hunter, S. K., Howatson, G., & Goodall, S. (2020). Physiological sex differences affect the integrative response to exercise: Acute and chronic implications. Experimental Physiology, 105, 2007-2021. https://doi.org/10.1113/EP088548
Astorino, T. A., & Schubert, M. M. (2014). Individual responses to completion of short-term and chronic interval training: A retrospective study. PLoS One, 9(5), e97638. https://doi.org/10.1371/journal.pone.0097638
Atkinson, G., Williamson, P., & Batterham, A. M. (2019). Issues in the determination of ‘responders’ and ‘non-responders’ in physiological research. Experimental Physiology, 104, 1215-1225. https://doi.org/10.1113/EP087712
Baldwin, J., Snow, R. J., & Febbraio, M. A. (2000). Effect of training status and relative exercise intensity on physiological responses in men. Medicine and Science in Sports and Exercise, 32(9), 1648-1654. https://doi.org/10.1097/00005768-200009000-00020
Barnes, J. N., & Fu, Q. (2018). Sex-specific ventricular and vascular adaptations to exercise. Advances in Experimental Medicine and Biology, 1065, 329-346. https://doi.org/10.1007/978-3-319-77932-4_21
Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology, 60, 2020-2027, https://doi.org/10.1152/jappl.1986.60.6.2020
Bishop, D. J., Botella, J., Genders, A. J., Lee, M. J. C., Saner, N. J., Kuang, J., Yan X., & Granata, C. (2019). High-intensity exercise and mitochondrial biogenesis: Current controversies and future research directions. Physiology, 34(1), 56-70. https://doi.org/10.1152/physiol.00038.2018
Black, M. I., Jones, A. M., Blackwell, J. R., Bailey, S. J., Wylie, L. J., McDonagh, S. T. J., Thompson C., Kelly J., Sumners P., Mileva K. N., Bowtell J. L., & Vanhatalo, A. (2017). Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. Journal of Applied Physiology, 122(3), 446-459. https://doi.org/10.1152/japplphysiol.00942.2016
Bonafiglia, J. T., Preobrazenski, N., Islam, H., Walsh, J. J., Ross, R., Johannsen, N. M., Martin C. K., Church T. S., Slentz C. A., Ross L. M., Kraus W. E., Kenny G. P., Goldfield G. S., Prud'homme D., Sigal R. J., Earnest C. P., & Gurd, B. J. (2021). Exploring differences in cardiorespiratory fitness response rates across varying doses of exercise training: A retrospective analysis of eight randomized controlled trials. Sports Medicine (in press). https://doi.org/10.1007/s40279-021-01442-9
Bonafiglia, J. T., Rotundo, M. P., Whittall, J. P., Scribbans, T. D., Graham, R. B., & Gurd, B. J. (2016). Inter-individual variability in the adaptive responses to endurance and sprint interval training: A randomized crossover study. PLoS One, e0167790, 11(12), e0167790. https://doi.org/10.1371/journal.pone.0167790
Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J., Pérusse L., Leon A. S., & Rao, D. C. (1999). Familial aggregation of V̇O2max response to exercise training: Results from the HERITAGE family study. Journal of Applied Physiology, 87(3), 1003-1008. https://doi.org/10.1152/jappl.1999.87.3.1003
Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., Rao D. C., & Rankinen, T. (2011). Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. Journal of Applied Physiology, 110(5), 1160-1170. https://doi.org/10.1152/japplphysiol.00973.2010
Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty C., Chaput J.-P., Chastin S., Chou R., Dempsey P. C., DiPietro L., Ekelund U., Firth J., Friedenreich C. M., Garcia L., Gichu M., Jago R., Katzmarzyk I. P. T., … Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451-1462. https://doi.org/10.1136/bjsports-2020-102955
Bye, A., Klevjer, M., Ryeng, E., da Silva, G. J. J., Moreira, J. B. N., Stensvold, D., & Wisløff, U. (2020). Identification of novel genetic variants associated with cardiorespiratory fitness. Progress in Cardiovascular Diseases, 63, 341-349. https://doi.org/10.1016/j.pcad.2020.02.001
Byrd, B. R., Keith, J., Keeling, S. M., Weatherwax, R. M., Nolan, P. B., Ramos, J. S., & Dalleck, L. C. (2019). Personalized moderate-intensity exercise training combined with high-intensity interval training enhances training responsiveness. International Journal of Environmental Research and Public Health, 16(12), 2088. https://doi.org/10.3390/ijerph16122088
Caen, K., Vermeire, K., Bourgois, J. G., & Boone, J. (2018). Exercise thresholds on trial: Are they really equivalent? Medicine and Science in Sports and Exercise, 50(6), 1277-1284. https://doi.org/10.1249/MSS.0000000000001547
Cardinale, D. A., Larsen, F. J., Schiffer, T. A., Morales-Alamo, D., Ekblom, B., Calbet, J. A. L., Holmberg, H.-C., & Boushel, R. (2018). Superior intrinsic mitochondrial respiration in women than in men. Frontiers in Physiology, 9, 1133. https://doi.org/10.3389/fphys.2018.01133
Carrick-Ranson, G., Hastings, J. L., Bhella, P. S., Shibata, S., Fujimoto, N., Palmer, D., Boyd K., & Levine, B. D. (2013). The effect of age-related differences in body size and composition on cardiovascular determinants of VO2max. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 68(5), 608-616. https://doi.org/10.1093/gerona/gls220
Carter, H., Pringle, J. S. M., Jones, A. M., & Doust, J. H. (2002). Oxygen uptake kinetics during treadmill running across exercise intensity domains. European Journal of Applied Physiology, 86(4), 347-354. https://doi.org/10.1007/s00421-001-0556-2
Casaburi, R., Storer, T. W., Ben-Dov, I., & Wasserman, K. (1987). Effect of endurance training on possible determinants of V̇O2 during heavy exercise. Journal of Applied Physiology, 62(1), 199-207. https://doi.org/10.1152/jappl.1987.62.1.199
Church, T. S., Blair, S. N., Cocreham, S., Johannsen, N., Johnson, W., Kramer, K., Mikus C. R., Myers V., Nauta M., Rodarte R. Q., Sparks L., Thompson A., & Earnest, C. P. (2010). Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: A randomized controlled trial. Journal of the American Medical Association, 304(20), 2253-2262. https://doi.org/10.1001/jama.2010.1710
Church, T. S., Earnest, C. P., Skinner, J. S., & Blair, S. N. (2007). Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: A randomized controlled trial. Journal of the American Medical Association, 297(19), 2081-2091. https://doi.org/10.1001/jama.297.19.2081
Clark, I. E., West, B. M., Reynolds, S. K., Murray, S. R., & Pettitt, R. W. (2013). Applying the critical velocity model for an off-season interval training program. Journal of Strength and Conditioning Research, 27(12), 3335-3341. https://doi.org/10.1519/JSC.0b013e31828f9d87
Craig, J. C., Vanhatalo, A., Burnley, M., Jones, A. M., & Poole, D. C. (2018). Critical power: Possibly the most important fatigue threshold in exercise physiology. In Muscle and Exercise Physiology (pp. 159-181). https://doi.org/10.1016/B978-0-12-814593-7.00008-6
Dalleck, L. C., Haney, D. E., Buchanan, C. A., & Weatherwax, R. M. (2016). Does a personalised exercise prescription enhance training efficacy and limit training unresponsiveness? A randomised controlled trial. Journal of Fitness Research, 5(3), 15-27.
de Souza, K. M., de Lucas, R. D., Salvador, P. C. D. N., Helal, L. C. A. S., Guglielmo, L. G. A., Greco, C. C., & Denadai, B. S. (2016). Análise de concordância entre a potência crítica e a intensidade correspondente ao 50% Δ no exercício de ciclismo. Revista Brasileira de Cineantropometria e Desempenho Humano, 18(2), 197-206. https://doi.org/10.5007/1980-0037.2016v18n2p197
Diaz-Canestro, C., & Montero, D. (2019). Sex dimorphism of VO2max trainability: A systematic review and meta-analysis. Sports Medicine, 49(12), 1949-1956. https://doi.org/10.1007/s40279-019-01180-z
Du, Y., Liu, B., Sun, Y., Snetselaar, L. G., Wallace, R. B., & Bao, W. (2019). Trends in adherence to the physical activity guidelines for Americans for aerobic activity and time spent on sedentary behavior among US adults, 2007 to 2016. JAMA Network Open, 2(7), e197597. https://doi.org/10.1001/jamanetworkopen.2019.7597
Dwyer, J., & Bybee, R. (1983). Heart rate indices of the anaerobic threshold. Medicine and Science in Sports and Exercise, 15(1), 72-76. https://doi.org/10.1249/00005768-198315010-00013
Edge, J., Bishop, D., & Goodman, C. (2006). The effects of training intensity on muscle buffer capacity in females. European Journal of Applied Physiology, 96(1), 97-105. https://doi.org/10.1007/s00421-005-0068-6
Farah, B. Q., Ritti-Dias, R. M., Balagopal, P., Hill, J. O., & Prado, W. L. (2014). Does exercise intensity affect blood pressure and heart rate in obese adolescents? A 6-month multidisciplinary randomized intervention study. Pediatric Obesity, 9(2), 111-120. https://doi.org/10.1111/j.2047-6310.2012.00145.x
Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39, 469-490, https://doi.org/10.2165/00007256-200939060-00003
Fleg, J. L., Morrell, C. H., Bos, A. G., Brant, L. J., Talbot, L. A., Wright, J. G., & Lakatta, E. G. (2005). Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation, 112(5), 674-682. https://doi.org/10.1161/CIRCULATIONAHA.105.545459
Flück, M. (2006). Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. Journal of Experimental Biology, 209, 2239-2248. https://doi.org/10.1242/jeb.02149
Froberg, K., & Pedersen, P. K. (1984). Sex differences in endurance capacity and metabolic response to prolonged, heavy exercise. European Journal of Applied Physiology and Occupational Physiology, 52(4), 446-450. https://doi.org/10.1007/BF00943378
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman D. C., & Swain, D. P. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359. https://doi.org/10.1249/MSS.0b013e318213fefb
Gaskill, S. E., Walker, A. J., Serfass, R. A., Bouchard, C., Gagnon, J., Rao, D. C., Skinner J. S., Wilmore J. H., & Leon, A. S. (2001). Changes in ventilatory threshold with exercise training in a sedentary population: The HERITAGE family study. International Journal of Sports Medicine, 22(8), 586-592. https://doi.org/10.1055/s-2001-18522
Godin, G., Desharnais, R., Valois, P., Lepage, L., Jobin, J., & Bradet, R. (1994). Differences in perceived barriers to exercise between high and low intenders: Observations among different populations. American Journal of Health Promotion, 8(4), 279-285. https://doi.org/10.4278/0890-1171-8.4.279
Granata, C., Jamnick, N. A., & Bishop, D. J. (2018). Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Medicine, 48, 1541-1559. https://doi.org/10.1007/s40279-018-0894-4
Guio de Prada, V., Ortega, J. F., Ramirez-Jimenez, M., Morales-Palomo, F., Pallares, J. G., & Mora-Rodriguez, R. (2019). Training intensity relative to ventilatory thresholds determines cardiorespiratory fitness improvements in sedentary adults with obesity. European Journal of Sport Science, 19(4), 549-556. https://doi.org/10.1080/17461391.2018.1540659
Gurd, B. J., Giles, M. D., Bonafiglia, J. T., Raleigh, J. P., Boyd, J. C., Ma, J. K., Zelt J. G. E., & Scribbans, T. D. (2015). Incidence of nonresponse and individual patterns of response following sprint interval training. Applied Physiology, Nutrition and Metabolism, 41(3), 229-234. https://doi.org/10.1139/apnm-2015-0449
Harber, M. P., Kaminsky, L. A., Arena, R., Blair, S. N., Franklin, B. A., Myers, J., & Ross, R. (2017). Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: Advances since 2009. Progress in Cardiovascular Diseases, 60, 11-20. https://doi.org/10.1016/j.pcad.2017.03.001
Hautala, A. J., Kiviniemi, A. M., Mäkikallio, T. H., Kinnunen, H., Nissilä, S., Huikuri, H. V., & Tulppo, M. P. (2006). Individual differences in the responses to endurance and resistance training. European Journal of Applied Physiology, 96(5), 535-542. https://doi.org/10.1007/s00421-005-0116-2
Hautala, A. J., Mäkikallio, T. H., Kiviniemi, A., Laukkanen, R. T., Nissilä, S., Huikuri, H. V., & Tulppo, M. P. (2003). Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. American Journal of Physiology. Heart and Circulatory Physiology, 285(4), H1747-H1752. https://doi.org/10.1152/ajpheart.00202.2003
Hecksteden, A., Pitsch, W., Rosenberger, F., & Meyer, T. (2018). Repeated testing for the assessment of individual response to exercise training. Journal of Applied Physiology, 124(6), 1567-1579. https://doi.org/10.1152/japplphysiol.00896.2017
Hickson, R. C., Bomze, H. A., & Holloszy, J. O. (1977). Linear increase in aerobic power induced by a strenuous program of endurance exercise. Journal of Applied Physiology, 42(3), 372-376. https://doi.org/10.1152/jappl.1977.42.3.372
Hill, A. V., & Lupton, H. (1923). Muscular exercise, lactic acid, and the supply and utilization of oxygen. QJM, os-16, 135-171. https://doi.org/10.1093/qjmed/os-16.62.135
Hoppeler, H. (2018). Deciphering VO2max: Limits of the genetic approach. Journal of Experimental Biology, 221. https://doi.org/10.1242/jeb.164327
Howden, E. J., Perhonen, M., Peshock, R. M., Zhang, R., Arbab-Zadeh, A., Adams-Huet, B., & Levine, B. D. (2015). Females have a blunted cardiovascular response to one year of intensive supervised endurance training. Journal of Applied Physiology, 119(1), 37-46. https://doi.org/10.1152/japplphysiol.00092.2015
Huang, G., Wang, R., Chen, P., Huang, S. C., Donnelly, J. E., & Mehlferber, J. P. (2016). Dose-response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. European Journal of Preventive Cardiology, 23(5), 518-529. https://doi.org/10.1177/2047487315582322
Iannetta, D., Inglis, E. C., Mattu, A. T., Fontana, F. Y., Pogliaghi, S., Keir, D. A., & Murias, J. M. (2020). A critical evaluation of current methods for exercise prescription in women and men. Medicine and Science in Sports and Exercise, 52(2), 466-473. https://doi.org/10.1249/MSS.0000000000002147
Iannetta, D., Keir, D. A., Fontana, F. Y., Inglis, E. C., Mattu, A. T., Paterson, D. H., Pogliaghi S., & Murias, J. M. (2021). Evaluating the accuracy of using fixed ranges of METs to categorize exertional intensity in a heterogeneous group of healthy individuals: Implications for cardiorespiratory fitness and health outcomes. Sports Medicine (in press). https://doi.org/10.1007/s40279-021-01476-z
Jamnick, N. A., Pettitt, R. W., Granata, C., Pyne, D. B., & Bishop, D. J. (2020). An examination and critique of current methods to determine exercise intensity. Sports Medicine, 50, 1729-1756. https://doi.org/10.1007/s40279-020-01322-8
Jones, A. M., Burnley, M., Black, M. I., Poole, D. C., & Vanhatalo, A. (2019). The maximal metabolic steady state: Redefining the ‘gold standard’. Physiological Reports, 7(10), e14098. https://doi.org/10.14814/phy2.14098
Jones, A. M., Kirby, B. S., Clark, I. E., Rice, H. M., Fulkerson, E., Wylie, L. J., Wilkerson D. P., Vanhatalo A., & Wilkins, B. W. (2020). Physiological demands of running at 2-hour marathon race pace. Journal of Applied Physiology, 130(2), 369-379. https://doi.org/10.1152/japplphysiol.00647.2020
Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J., & Poole, D. C. (2008). Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. American Journal of Physiology. Regulatory Integrative and Comparative Physiology, 294(2), R585-R593. https://doi.org/10.1152/ajpregu.00731.2007
Joseph, L., & John, W. (2020). Molecular transducers of physical activity consortium (MoTrPAC) progress and study protocol design. Current Developments in Nutrition, 4(Suppl 2), 1757-1757. https://doi.org/10.1093/cdn/nzaa066_012
Joyner, M. J. (2017). Exercise and trainability: Contexts and consequences. Journal of Physiology, 595(11), 3239-3240. https://doi.org/10.1113/JP274031
Joyner, M. J., & Lundby, C. (2018). Concepts about VO2max and trainability are context dependent. Exercise and Sport Sciences Reviews, 46, 138-143. https://doi.org/10.1249/JES.0000000000000150
Karavirta, L., Häkkinen, K., Kauhanen, A., Arija-Blázquez, A., Sillanpää, E., Rinkinen, N., & Ḧkkinen, A. (2011). Individual responses to combined endurance and strength training in older adults. Medicine and Science in Sports and Exercise, 43(3), 484-490. https://doi.org/10.1249/MSS.0b013e3181f1bf0d
Katch, V., Weltman, A., Sady, S., & Freedson, P. (1978). Validity of the relative percent concept for equating training intensity. European Journal of Applied Physiology and Occupational Physiology, 39(4), 219-227. https://doi.org/10.1007/BF00421445
Keir, D. A., Fontana, F. Y., Robertson, T. C., Murias, J. M., Paterson, D. H., Kowalchuk, J. M., & Pogliaghi, S. (2015). Exercise intensity thresholds: Identifying the boundaries of sustainable performance. Medicine and Science in Sports and Exercise, 47(9), 1932-1940. https://doi.org/10.1249/MSS.0000000000000613
Kohrt, W. M., Malley, M. T., Coggan, A. R., Spina, R. J., Ogawa, T., Ehsani, A. A., Bourey R. E., Martin W. H. 3rd, & Holloszy, J. O. (1991). Effects of gender, age, and fitness level on response of VO2max to training in 60-71 yr olds. Journal of Applied Physiology, 71(5), 2004-2011. https://doi.org/10.1152/jappl.1991.71.5.2004
Kraus, W. E., Torgan, C. E., Duscha, B. D., Norris, J., Brown, S. A., Cobb, F. R., Bales C. W., Annex B. H., Samsa G. P., Houmard J. A., & Slentz, C. A. (2001). Studies of a targeted risk reduction intervention through defined exercise (STRRIDE). Medicine and Science in Sports and Exercise, 33(10), 1774-1784. https://doi.org/10.1097/00005768-200110000-00025
Lansley, K. E., Dimenna, F. J., Bailey, S. J., & Jones, A. M. (2011). A new method to normalise exercise intensity. International Journal of Sports Medicine, 32(7), 535-541. https://doi.org/10.1055/s-0031-1273754
Lundby, C., Montero, D., & Joyner, M. (2017). Biology of VO2max: Looking under the physiology lamp. Acta Physiologica, 220, 218-228. https://doi.org/10.1111/apha.12827
MacInnis, M. J., & Gibala, M. J. (2017). Physiological adaptations to interval training and the role of exercise intensity. Journal of Physiology, 595, 2915-2930. https://doi.org/10.1113/JP273196
Mann, T., Lamberts, R. P., & Lambert, M. I. (2013). Methods of prescribing relative exercise intensity: Physiological and practical considerations. Sports Medicine, 43(7), 613-625. https://doi.org/10.1007/s40279-013-0045-x
Margaritelis, N. V., Theodorou, A. A, Paschalis, V, Veskoukis, A. S, Dipla, K, Zafeiridis, A, Panayiotou G, Vrabas I. S, Kyparos A, & Nikolaidis, M. G (2018). Adaptations to endurance training depend on exercise-induced oxidative stress: Exploiting redox interindividual variability. Acta Physiologica, 222(2), e12898. https://doi.org/10.1111/apha.12898
Marini F, C, S, D, L, S A, Skinner, J. S, Sarzynski, M. A, Bouchard, C, Rocchi M. B. L, Piccoli G, Stocchi V, Federici A, & Lucertini, F (2021). HRR and VO2R fractions are not equivalent: Is it time to rethink aerobic exercise prescription methods? Medicine and Science in Sports and Exercise, 53(1), 174-182. https://doi.org/10.1249/MSS.0000000000002434
Marsh, C. E, Thomas, H, Naylor, L. H, Scurrah, K. J, & Green, D. J (2020). Fitness and strength responses to distinct exercise modes in twins: Studies of Twin Responses to Understand Exercise as a THerapy (STRUETH) study. Journal of Physiology, 598, 3845. https://doi.org/10.1113/JP280048
Maturana, F. M, Schellhorn, P, Erz, G, Burgstahler, C, Widmann, M, Munz, B, Soares R. N, Murias J. M, Thiel A, & Nieß, A. M (2021). Individual cardiovascular responsiveness to work-matched exercise within the moderate- and severe-intensity domains. European Journal of Applied Physiology (in press) https://doi.org/10.1007/s00421-021-04676-7
McGuire, D. K, Levine, B. D, Williamson, J. W, Snell, P. G, Blomqvist, C. G, Saltin, B, & Mitchell, J. H (2001). A 30-year follow-up of the dallas bed rest and training study: II. Effect of age on cardiovascular adaptation to exercise training. Circulation, 104(12), 1358-1366. https://doi.org/10.1161/hc3701.096099
Metcalfe, R. S, & Vollaard, N. B (2021). Heterogeneity and incidence of non-response for changes in cardiorespiratory fitness following time-efficient sprint interval exercise training. Applied Physiology, Nutrition, and Metabolism (in press). https://doi.org/10.1139/apnm-2020-0855
Meyer, T, Gabriel, H. H. W, & Kindermann, W (1999). Is determination of exercise intensities as percentages of V̇O2max or HRmax adequate? Medicine and Science in Sports and Exercise, 31(9), 1342-1345. https://doi.org/10.1097/00005768-199909000-00017
Milanović, Z, Sporiš, G, & Weston, M (2015). Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: A systematic review and meta-analysis of controlled trials. Sports Medicine, 45(10), 1469-1481. https://doi.org/10.1007/s40279-015-0365-0
Montero, D, & Lundby, C (2017). Refuting the myth of non-response to exercise training: ‘non-responders’ do respond to higher dose of training. Journal of Physiology, 595(11), 3377-3387. https://doi.org/10.1113/JP273480
Montero, D, Madsen, K, Meinild-Lundby, A. K, Edin, F, & Lundby, C (2018). Sexual dimorphism of substrate utilization: Differences in skeletal muscle mitochondrial volume density and function. Experimental Physiology, 103(6), 851-859. https://doi.org/10.1113/EP087007
Muniz-Pumares, D, Karsten, B, Triska, C, & Glaister, M (2019). Methodological approaches and related challenges associated with the determination of critical power and curvature constant. Journal of Strength and Conditioning Research, 33, 584-596. https://doi.org/10.1519/JSC.0000000000002977
Myers, J, Doom, R, King, R, Fonda, H, Chan, K, Kokkinos, P, & Rehkopf, D. H (2018). Association between cardiorespiratory fitness and health care costs: The Veterans Exercise Testing Study. Mayo Clinic Proceedings, 93(1), 48-55. https://doi.org/10.1016/j.mayocp.2017.09.019
Pandey, A., Ayers, C., Blair, S. N., Swift, D. L., Earnest, C. P., Kitzman, D. W., Khera A., Church T. S., & Berry, J. D. (2015a). Cardiac determinants of heterogeneity in fitness change in response to moderate intensity aerobic exercise training: The DREW study. Journal of the American College of Cardiology, 65, 1057-1058. https://doi.org/10.1016/j.jacc.2014.11.062
Pandey, A., Swift, D. L., Mcguire, D. K., Ayers, C. R., Neeland, I. J., Blair, S. N., Johannsen N., Earnest C. P., Berry J. D., & Church, T. S. (2015b). Metabolic effects of exercise training among fitness-nonresponsive patients with type 2 diabetes: The HART-D study. Diabetes Care, 38(8), 1494-1501. https://doi.org/10.2337/dc14-2378
Pettitt, R. W. (2016). Applying the critical speed concept to racing strategy and interval training prescription. International Journal of Sports Physiology and Performance, 11, 842-847. https://doi.org/10.1123/ijspp.2016-0001
Pettitt, R. W., Placek, A. M., Clark, I. E., Jamnick, N. A., & Murray, S. R. (2015). Sensitivity of prescribing high-intensity, interval training using the critical power concept. International Journal of Exercise Science, 8(3), 202-212.
Pickering, C., & Kiely, J. (2019). Do non-responders to exercise exist-And if so, what should we do about them? Sports Medicine, 49(1), 1-7. https://doi.org/10.1007/s40279-018-01041-1
Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B., & Jones, A. M. (2016). Critical power: An important fatigue threshold in exercise physiology. Medicine and Science in Sports and Exercise, 48(11), 2320-2334. https://doi.org/10.1249/MSS.0000000000000939
Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2020). The anaerobic threshold: 50+ years of controversy. Journal of Physiology, 599, 737-767. https://doi.org/10.1113/JP279963
Rankinen, T., Fuku, N., Wolfarth, B., Wang, G., Sarzynski, M. A., Alexeev, D. G., Ahmetov I. I., Boulay M. R., Cieszczyk P., Eynon N., Filipenko M. L., Garton F. C., Generozov E. V., Govorun V. M., Houweling P. J., Kawahara T., Kostryukova E. S., Kulemin N. A., Larin A. K., … Bouchard, C. (2016). No evidence of a common DNA variant profile specific to world class endurance athletes. PLoS One, 11(1), e0147330. https://doi.org/10.1371/journal.pone.0147330
Robinson, M. M., Dasari, S., Konopka, A. R., Johnson, M. L., Manjunatha, S., Esponda, R. R., Carter R. E., Lanza I. R., & Nair, K. S. (2017). Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metabolism, 25(3), 581-592. https://doi.org/10.1016/j.cmet.2017.02.009
Ross, L., Slentz, C. A., & Kraus, W. E. (2019). Evaluating individual level responses to exercise for health outcomes in overweight or obese adults. Frontiers in Physiology, 10, 1401. https://doi.org/10.3389/fphys.2019.01401
Ross, R., De Lannoy, L., & Stotz, P. J. (2015). Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clinic Proceedings, 90(11), 1506-1514. https://doi.org/10.1016/j.mayocp.2015.07.024
Ross, R., Goodpaster, B. H., Koch, L. G., Sarzynski, M. A., Kohrt, W. M., Johannsen, N. M., Skinner J. S., Castro A., Irving B. A., Noland R. C., Sparks L. M., Spielmann G., Day A. G., Pitsch W., Hopkins W. G., & Bouchard, C. (2019). Precision exercise medicine: Understanding exercise response variability. British Journal of Sports Medicine, 53(18), 1141-1153. https://doi.org/10.1136/bjsports-2018-100328
Ross R., Blair S. N., Arena R., Church T. S., Després J. P., Franklin B. A., Haskell W. L., Kaminsky L. A., Levine B. D., Lavie C. J., Myers J., Niebauer J., Sallis R., Sawada S. S., Sui X., Wisløff U. (2016) Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation, 134 (24), https://doi.org/10.1161/cir.0000000000000461
Rowan, C. P., Riddell, M. C., Gledhill, N., & Jamnik, V. K. (2017). Aerobic exercise training modalities and prediabetes risk reduction. Medicine and Science in Sports and Exercise, 49(3), 403-412. https://doi.org/10.1249/MSS.0000000000001135
Saltin, B., Hartley, L. H., Kilbom, Å., & Åstrand, I. (1969). Physical training in sedentary middle-aged and older men II. Oxygen uptake, heart rate, and blood lactate concentration at submaximal and maximal exercise. Scandinavian Journal of Clinical and Laboratory Investigation, 24, 323-334. https://doi.org/10.3109/00365516909080169
Sarzynski, M. A., Ghosh, S., & Bouchard, C. (2017). Genomic and transcriptomic predictors of response levels to endurance exercise training. Journal of Physiology, 595, 2931-2939. https://doi.org/10.1113/JP272559
Scharhag-Rosenberger, F., Meyer, T., Gäßler, N., Faude, O., & Kindermann, W. (2010). Exercise at given percentages of VO2max: Heterogeneous metabolic responses between individuals. Journal of Science and Medicine in Sport, 13(1), 74-79. https://doi.org/10.1016/j.jsams.2008.12.626
Scharhag-Rosenberger, F., Walitzek, S., Kindermann, W., & Meyer, T. (2012). Differences in adaptations to 1 year of aerobic endurance training: Individual patterns of nonresponse. Scandinavian Journal of Medicine and Science in Sports, 22(1), 113-118. https://doi.org/10.1111/j.1600-0838.2010.01139.x
Schutte, N. M., Nederend, I., Hudziak, J. J., Bartels, M., & de Geus, E. J. C. (2016). Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption. Physiological Genomics, 48(3), 210-219. https://doi.org/10.1152/physiolgenomics.00117.2015
Sisson, S. B., Katzmarzyk, P. T., Earnest, C. P., Bouchard, C., Blair, S. N., & Church, T. S. (2009). Volume of exercise and fitness nonresponse in sedentary, postmenopausal women. Medicine and Science in Sports and Exercise, 41(3), 539-545. https://doi.org/10.1249/MSS.0b013e3181896c4e
Skinner, J. S., Jaskólski, A., Jaskólska, A., Krasnoff, J., Gagnon, J., Leon, A. S., Rao D. C., Wilmore J. H., & Bouchard, C. (2001). Age, sex, race, initial fitness, and response to training: The HERITAGE Family Study. Journal of Applied Physiology, 90(5), 1770-1776. https://doi.org/10.1152/jappl.2001.90.5.1770
Slentz, C. A., Bateman, L. A., Willis, L. H., Shields, A. T., Tanner, C. J., Piner, L. W., Hawk V. H., Muehlbauer M. J., Samsa G. P., Nelson R. C., Huffman K. M., Bales C. W., Houmard J. A., & Kraus, W. E. (2011). Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. American Journal of Physiology. Endocrinology and Metabolism, 301(5), E1033-E1039. https://doi.org/10.1152/ajpendo.00291.2011
Spencer, C. C. A., Su, Z., Donnelly, P., & Marchini, J. (2009). Designing genome-wide association studies: Sample size, power, imputation, and the choice of genotyping chip. PLoS Genetics, 5(5), e1000477. https://doi.org/10.1371/journal.pgen.1000477
Spina, R. J., Ogawa, T., Kohrt, W. M., Martin, W. H., Holloszy, J. O., & Ehsani, A. A. (1993). Differences in cardiovascular adaptations to endurance exercise training between older men and women. Journal of Applied Physiology, 75(2), 849-855. https://doi.org/10.1152/jappl.1993.75.2.849
Swinton, P. A., Hemingway, B. S., Saunders, B., Gualano, B., & Dolan, E. (2018). A statistical framework to interpret individual response to intervention: Paving the way for personalized nutrition and exercise prescription. Frontiers in Nutrition, 5, 41. https://doi.org/10.3389/fnut.2018.00041
Thomas, E., Pettitt, R. W., & Kramer, M. (2020). High-intensity interval training prescribed within the secondary severe-intensity domain improves critical speed but not finite distance capacity. Journal of Science in Sport and Exercise, 2, 154-166. https://doi.org/10.1007/s42978-020-00053-6
Vainshelboim, B., Arena, R., Kaminsky, L. A., & Myers, J. (2020). Reference standards for ventilatory threshold measured with cardiopulmonary exercise testing: The fitness registry and the importance of exercise: A national database. Chest, 157(6), 1531-1537. https://doi.org/10.1016/j.chest.2019.11.022
Van Der Vaart, H., Murgatroyd, S. R., Rossiter, H. B., Chen, C., Casaburi, R., & Porszasz, J. (2014). Selecting constant work rates for endurance testing in COPD: The role of the power-duration relationship. COPD, 11(3), 267-276. https://doi.org/10.3109/15412555.2013.840572
Voisin, S., Jacques, M., Lucia, A., Bishop, D. J., & Eynon, N. (2019). Statistical considerations for exercise protocols aimed at measuring trainability. Exercise and Sport Sciences Reviews, 47(1), 37-45. https://doi.org/10.1249/JES.0000000000000176
Warburton, D. E. R., & Bredin, S. S. D. (2017). Health benefits of physical activity: A systematic review of current systematic reviews. Current Opinion in Cardiology, 32, 541-556. https://doi.org/10.1097/HCO.0000000000000437
Wasserman, K., & McIlroy, M. B. (1964). Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. American Journal of Cardiology, 14, 844-852, https://doi.org/10.1016/0002-9149(64)90012-8
Weatherwax, R. M., Harris, N. K., Kilding, A. E., & Dalleck, L. C. (2019). Incidence of VO2max responders to personalized versus standardized exercise prescription. Medicine and Science in Sports and Exercise, 51(4), 681-691. https://doi.org/10.1249/MSS.0000000000001842
Weltman, A., Snead, D., Seip, R., Schurrer, R., Weltman, J., Rutt, R., & Rogol, A. (1990). Percentages of maximal heart rate, heart rate reserve and VO2max for determining endurance training intensity in male runners. International Journal of Sports Medicine, 11(3), 218-222. https://doi.org/10.1055/s-2007-1024795
Weltman, A., Weltman, J., Rutt, R., Seip, R., Levine, S., Snead, D., Kaiser D., & Rogol, A. (1989). Percentage of maximal heart rate, heart rate reserve, and V̇O2 peak for determining endurance training intensity in sedentary women. International Journal of Sports Medicine, 10(3), 212-216. https://doi.org/10.1055/s-2007-1024903
Williams, C. J., Gurd, B. J., Bonafiglia, J. T., Voisin, S., Li, Z., Harvey, N., Croci I., Taylor J. L., Gajanand T., Ramos J. S., Fassett R. G., Little J. P., Francois M. E., Hearon C. M., Sarma S., Janssen S., Van Craenenbroeck E. M., Beckers P., Cornelissen V. A., …, Coombes, J. S. (2019). A multi-center comparison of VO2peak trainability between interval training and moderate intensity continuous training. Frontiers in Physiology, 10, 19. https://doi.org/10.3389/fphys.2019.00019
Williams, C. J., Williams, M. G., Eynon, N., Ashton, K. J., Little, J. P., Wisloff, U., & Coombes, J. S. (2017). Genes to predict VO2max trainability: A systematic review. BMC Genomics, 18, 81-110. https://doi.org/10.1186/s12864-017-4192-6
Wolpern, A. E., Burgos, D. J., Janot, J. M., & Dalleck, L. C. (2015). Is a threshold-based model a superior method to the relative percent concept for establishing individual exercise intensity? A randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 7(1), 1-9. https://doi.org/10.1186/s13102-015-0011-z
Yan, X., Eynon, N., Papadimitriou, I. D., Kuang, J., Munson, F., Tirosh, O., O'Keefe L., Griffiths L. R., Ashton K. J., Byrne N., Pitsiladis Y. P., & Bishop, D. J. (2017). The gene SMART study: Method, study design, and preliminary findings. BMC Genomics, 18(8), 821. https://doi.org/10.1186/s12864-017-4186-4