Homozygous single nucleotide duplication of SLC38A8 in autosomal recessive foveal hypoplasia: The first Japanese case report.


Journal

Documenta ophthalmologica. Advances in ophthalmology
ISSN: 1573-2622
Titre abrégé: Doc Ophthalmol
Pays: Netherlands
ID NLM: 0370667

Informations de publication

Date de publication:
12 2021
Historique:
received: 02 03 2021
accepted: 13 05 2021
pubmed: 27 5 2021
medline: 15 12 2021
entrez: 26 5 2021
Statut: ppublish

Résumé

To characterize the clinical and genetic features of a Japanese male patient with foveal hypoplasia caused by a homozygous single nucleotide duplication in the SLC38A8 gene. We performed a comprehensive ophthalmic examination including full-field electroretinography (FF-ERG) and pattern-reversal visual evoked potentials (PR-VEPs). Whole-exome sequencing (WES) was performed to identify the disease-causing variant; Sanger sequencing was used for confirmation. In the WES analysis, a homozygous single nucleotide duplication (c.995dupG; p.Trp333MetfsTer35) was identified in SLC38A8 of the patient. His unaffected mother carried the variant heterozygously. The patient exhibited hyperopia, congenital nystagmus, low visual acuity, and grade 4 foveal hypoplasia. Slit-lamp examination revealed mild posterior embryotoxon and goniodysgenesis. Fundus examination revealed the absence of foveal hyperpigmentation and foveal avascularity, but there were no retinal degenerative lesions. In the FF-ERG, the amplitudes of rod ERG, standard-flash, and bright-flash ERG were within the normal range; cone-mediated responses also showed nearly normal amplitudes. The PR-VEP findings revealed delayed P100 latencies and decreased amplitudes of the P100 components, but no chiasmal misrouting. This report is the first report on the clinical and genetic characteristics of SLC38A8-associated foveal hypoplasia in the Japanese population. This is also the first report of normal rod- and cone-mediated responses in a patient with this disorder.

Identifiants

pubmed: 34037952
doi: 10.1007/s10633-021-09842-y
pii: 10.1007/s10633-021-09842-y
doi:

Substances chimiques

Amino Acid Transport Systems, Neutral 0
Nucleotides 0
Slc38a8 protein, human 0

Types de publication

Case Reports Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

323-330

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Hingorani M, Williamson KA, Moore AT, van Heyningen V (2009) Detailed ophthalmologic evaluation of 43 individuals with PAX6 mutations. Invest Ophthalmol Vis Sci 50:2581–2590. https://doi.org/10.1167/iovs.08-2827
doi: 10.1167/iovs.08-2827 pubmed: 19218613
Yahalom C, Blumenfeld A, Hendler K, Wussuki-Lior O, Macarov M, Shohat M et al (2018) Mild aniridia phenotype: an under-recognized diagnosis of a severe inherited ocular disease. Graefes Arch Clin Exp Ophthalmol 256:2157–2164. https://doi.org/10.1007/s00417-018-4119-1
doi: 10.1007/s00417-018-4119-1 pubmed: 30167917
Lima Cunha D, Arno G, Corton M, Moosajee M (2019) The Spectrum of PAX6 mutations and genotype-phenotype correlations in the eye. Genes (Basel). https://doi.org/10.3390/genes10121050
doi: 10.3390/genes10121050
Thomas MG, Papageorgiou E, Kuht HJ, Gottlob I (2020) Normal and abnormal foveal development. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2020-316348
doi: 10.1136/bjophthalmol-2020-316348 pubmed: 33148537
Azuma N, Nishina S, Yanagisawa H, Okuyama T, Yamada M (1996) PAX6 missense mutation in isolated foveal hypoplasia. Nat Genet 13:141–142. https://doi.org/10.1038/ng0696-141
doi: 10.1038/ng0696-141 pubmed: 8640214
Thomas S, Thomas MG, Andrews C, Chan WM, Proudlock FA, McLean RJ et al (2014) Autosomal-dominant nystagmus, foveal hypoplasia and presenile cataract associated with a novel PAX6 mutation. Eur J Hum Genet 22:344–349. https://doi.org/10.1038/ejhg.2013.162
doi: 10.1038/ejhg.2013.162 pubmed: 23942204
Matsushita I, Morita H, Kondo H (2020) Autosomal dominant foveal hypoplasia without visible macular abnormalities and PAX6 mutations. Jpn J Ophthalmol 64:635–641. https://doi.org/10.1007/s10384-020-00766-9
doi: 10.1007/s10384-020-00766-9 pubmed: 32857266
van Genderen MM, Riemslag FC, Schuil J, Hoeben FP, Stilma JS, Meire FM (2006) Chiasmal misrouting and foveal hypoplasia without albinism. Br J Ophthalmol 90:1098–1102. https://doi.org/10.1136/bjo.2006.091702
doi: 10.1136/bjo.2006.091702 pubmed: 16707527 pmcid: 1857410
Poulter JA, Al-Araimi M, Conte I, van Genderen MM, Sheridan E, Carr IM et al (2013) Recessive mutations in SLC38A8 cause foveal hypoplasia and optic nerve misrouting without albinism. Am J Hum Genet 93:1143–1150. https://doi.org/10.1016/j.ajhg.2013.11.002
doi: 10.1016/j.ajhg.2013.11.002 pubmed: 24290379 pmcid: 3853409
Al-Araimi M, Pal B, Poulter JA, van Genderen MM, Carr I, Cudrnak T et al (2013) A new recessively inherited disorder composed of foveal hypoplasia, optic nerve decussation defects and anterior segment dysgenesis maps to chromosome 16q23.3-24.1. Mol Vis 19:2165–2172
pubmed: 24194637 pmcid: 3816992
McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R et al (2015) ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130:1–12. https://doi.org/10.1007/s10633-014-9473-7
doi: 10.1007/s10633-014-9473-7 pubmed: 25502644
Hayashi T, Hosono K, Kurata K, Katagiri S, Mizobuchi K, Ueno S et al (2020) Coexistence of GNAT1 and ABCA4 variants associated with Nougaret-type congenital stationary night blindness and childhood-onset cone-rod dystrophy. Doc Ophthalmol 140:147–157. https://doi.org/10.1007/s10633-019-09727-1
doi: 10.1007/s10633-019-09727-1 pubmed: 31583501
Ninomiya W, Mizobuchi K, Hayashi T, Okude S, Katagiri S, Kubo A et al (2020) Electroretinographic abnormalities associated with pregabalin: a case report. Doc Ophthalmol 140:279–287. https://doi.org/10.1007/s10633-019-09743-1
doi: 10.1007/s10633-019-09743-1 pubmed: 31900741
Hayashi T, Mizobuchi K, Kikuchi S, Nakano T (2020) Novel biallelic TRPM1 variants in an elderly patient with complete congenital stationary night blindness. Doc Ophthalmol. https://doi.org/10.1007/s10633-020-09798-5
doi: 10.1007/s10633-020-09798-5 pubmed: 33068213
Parashar R, Shukla M, Ganguly A, Hulke SM (2020) Neurophysiological parameters of sensory perception and cognition among different modalities of learners. J Educ Health Promot 9:162. https://doi.org/10.4103/jehp.jehp_654_19
doi: 10.4103/jehp.jehp_654_19 pubmed: 33015200 pmcid: 7500395
Sano Y, Matsukane Y, Watanabe A, Sonoda KH, Kondo H (2018) Lack of FOXE3 coding mutation in a case of congenital aphakia. Ophthalmic Genet 39:95–98. https://doi.org/10.1080/13816810.2017.1350722
doi: 10.1080/13816810.2017.1350722 pubmed: 28805541
Thomas MG, Kumar A, Mohammad S, Proudlock FA, Engle EC, Andrews C et al (2011) Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity? Ophthalmology 118:1653–1660. https://doi.org/10.1016/j.ophtha.2011.01.028
doi: 10.1016/j.ophtha.2011.01.028 pubmed: 21529956
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30
doi: 10.1038/gim.2015.30 pubmed: 4544753 pmcid: 4544753
Perez Y, Gradstein L, Flusser H, Markus B, Cohen I, Langer Y et al (2014) Isolated foveal hypoplasia with secondary nystagmus and low vision is associated with a homozygous SLC38A8 mutation. Eur J Hum Genet 22:703–706. https://doi.org/10.1038/ejhg.2013.212
doi: 10.1038/ejhg.2013.212 pubmed: 24045842
Toral MA, Velez G, Boudreault K, Schaefer KA, Xu Y, Saffra N et al (2017) Structural modeling of a novel SLC38A8 mutation that causes foveal hypoplasia. Mol Genet Genomic Med 5:202–209. https://doi.org/10.1002/mgg3.266
doi: 10.1002/mgg3.266 pubmed: 28546991 pmcid: 5441399
Campbell P, Ellingford JM, Parry NRA, Fletcher T, Ramsden SC, Gale T et al (2019) Clinical and genetic variability in children with partial albinism. Sci Rep 9:16576. https://doi.org/10.1038/s41598-019-51768-8
doi: 10.1038/s41598-019-51768-8 pubmed: 31719542 pmcid: 6851142
Weiner C, Hecht I, Rotenstreich Y, Guttman S, Or L, Morad Y et al (2020) The pathogenicity of SLC38A8 in five families with foveal hypoplasia and congenital nystagmus. Exp Eye Res 193:107958. https://doi.org/10.1016/j.exer.2020.107958
doi: 10.1016/j.exer.2020.107958 pubmed: 32032626
Kuht HJ, Han J, Maconachie GDE, Park SE, Lee ST, McLean R et al (2020) SLC38A8 mutations result in arrested retinal development with loss of cone photoreceptor specialization. Hum Mol Genet 29:2989–3002. https://doi.org/10.1093/hmg/ddaa166
doi: 10.1093/hmg/ddaa166 pubmed: 32744312 pmcid: 7645707
Schiff ER, Tailor VK, Chan HW, Theodorou M, Webster AR, Moosajee M (2021) Novel biallelic variants and phenotypic features in patients with SLC38A8-related foveal hypoplasia. Int J Mol Sci. https://doi.org/10.3390/ijms22031130
doi: 10.3390/ijms22031130 pubmed: 33671840 pmcid: 7926380
Pott JW, Jansonius NM, Kooijman AC (2003) Chiasmal coefficient of flash and pattern visual evoked potentials for detection of chiasmal misrouting in albinism. Doc Ophthalmol 106:137–143. https://doi.org/10.1023/a:1022526409674
doi: 10.1023/a:1022526409674 pubmed: 12678278
Russell-Eggitt I, Kriss A, Taylor DS (1990) Albinism in childhood: a flash VEP and ERG study. Br J Ophthalmol 74:136–140. https://doi.org/10.1136/bjo.74.3.136
doi: 10.1136/bjo.74.3.136 pubmed: 2322509 pmcid: 1042033
Nusinowitz S, Sarraf D (2008) Retinal function in X-linked ocular albinism (OA1). Curr Eye Res 33:789–803. https://doi.org/10.1080/02713680802376353
doi: 10.1080/02713680802376353 pubmed: 18798082

Auteurs

Takaaki Hayashi (T)

Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan. taka@jikei.ac.jp.
Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, 6-41-2 Aoto, Katsushika-ku, Tokyo, 125-8506, Japan. taka@jikei.ac.jp.

Hiroyuki Kondo (H)

Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807-8555, Japan.

Itsuka Matsushita (I)

Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807-8555, Japan.

Kei Mizobuchi (K)

Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan.

Akinori Baba (A)

Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan.

Kie Iida (K)

Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan.

Hiroyuki Kubo (H)

Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan.

Tadashi Nakano (T)

Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH