Treatment of partial injury of the calcaneus tendon with heterologous fibrin biopolymer and/or photobiomodulation in rats.
Calcaneus tendon
Heterologous fibrin biopolymer
Photobiomodulation
Rats
Tissue repair
Journal
Lasers in medical science
ISSN: 1435-604X
Titre abrégé: Lasers Med Sci
Pays: England
ID NLM: 8611515
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
29
10
2020
accepted:
09
05
2021
pubmed:
28
5
2021
medline:
16
3
2022
entrez:
27
5
2021
Statut:
ppublish
Résumé
The present study aimed to evaluate the new heterologous fibrin biopolymer associated, or not, with photobiomodulation therapy for application in tendon injuries, considered a serious and common orthopedic problem. Thus, 84 Rattus norvegicus had partial transection of the calcaneus tendon (PTCT) and were randomly divided into: control (CG); heterologous fibrin biopolymer (HFB); photobiomodulation (PBM); heterologous fibrin biopolymer + photobiomodulation (HFB + PBM). The animals received HFB immediately after PTCT, while PBM (660 nm, 40 mW, 0.23 J) started 24 h post injury and followed every 24 h for 7, 14, and 21 days. The results of the edema volume showed that after 24 h of PTCT, there was no statistical difference among the groups. After 7, 14, and 21 days, it was observed that the treatment groups were effective in reducing edema when compared to the control. The HFB had the highest edema volume reduction after 21 days of treatment. The treatment groups did not induce tissue necrosis or infections on the histopathological analysis. Tenocyte proliferation, granulation tissue, and collagen formation were observed in the PTCT area in the HFB and HFB + PBM groups, which culminated a better repair process when compared to the CG in the 3 experimental periods. Interestingly, the PBM group revealed, in histological analysis, major tendon injury after 7 days; however, in the periods of 14 and 21 days, the PBM had a better repair process compared to the CG. In the quantification of collagen, there was no statistical difference between the groups in the 3 experimental periods. The findings suggest that the HFB and PBM treatments, isolated or associated, were effective in reducing the volume of the edema, stimulating the repair process. However, the use of HFB alone was more effective in promoting the tendon repair process. Thus, the present study consolidates previous studies of tendon repair with this new HFB. Future clinical trials will be needed to validate this proposal.
Identifiants
pubmed: 34041619
doi: 10.1007/s10103-021-03341-x
pii: 10.1007/s10103-021-03341-x
doi:
Substances chimiques
Biopolymers
0
Fibrin
9001-31-4
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
971-981Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
Références
James R, Kesturu G, Balian G, Chhabra AB (2008) Tendon biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am 33:102–112. https://doi.org/10.1016/j.jhsa.2007.09.007
doi: 10.1016/j.jhsa.2007.09.007
pubmed: 18261674
Andarawis-Puri N, Flatow EL, Soslowsky LJ (2015) Tendon basic science: development, repair, regeneration, and healing. J Orthop Res 33:780–784. https://doi.org/10.1002/jor.22869
doi: 10.1002/jor.22869
pubmed: 25764524
pmcid: 4427041
Thorpe CT, Peffers MJ, Simpson D et al (2016) Anatomical heterogeneity of tendon fascicular and interfascicular tendon compartments have distinct proteomic composition. Sci Rep 6:1–12. https://doi.org/10.1038/srep20455
doi: 10.1038/srep20455
Bogaerts S, Desmet H, Slagmolen P, Peers K (2016) Strain mapping in the Achilles tendon-a systematic review. J Biomech 49:1411–1419. https://doi.org/10.1016/j.jbiomech.2016.02.057
doi: 10.1016/j.jbiomech.2016.02.057
pubmed: 27113537
Egger AC, Berkowitz MJ (2017) Achilles tendon injuries. Curr Rev Musculoskelet Med 10:72–80. https://doi.org/10.1007/s12178-017-9386-7
doi: 10.1007/s12178-017-9386-7
pubmed: 28194638
pmcid: 5344857
Karaaslan F, Mermerkaya MU, Çıraklı A et al (2016) Surgical versus conservative treatment following acute rupture of the Achilles tendon: is there a pedobarographic difference? Ther Clin Risk Manag 12:1311–1315. https://doi.org/10.2147/TCRM.S116385
doi: 10.2147/TCRM.S116385
pubmed: 27621640
pmcid: 5010151
Zhao J-G, Meng X-H, Liu L et al (2017) Early functional rehabilitation versus traditional immobilization for surgical Achilles tendon repair after acute rupture: a systematic review of overlapping meta-analyses. Sci Rep 7:39871. https://doi.org/10.1038/srep39871
doi: 10.1038/srep39871
pubmed: 28054658
pmcid: 5215510
Lawrence JE, Nasr P, Fountain DM et al (2017) Functional outcomes of conservatively managed acute ruptures of the Achilles tendon. Bone Joint J 99:87–93. https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0452.R1
doi: 10.1302/0301-620X.99B1.BJJ-2016-0452.R1
pubmed: 28053262
Deng S, Sun Z, Zhang C et al (2017) Surgical treatment versus conservative management for acute Achilles tendon rupture: a systematic review and meta-analysis of randomized controlled trials. J Foot Ankle Surg 56:1236–1243. https://doi.org/10.1053/j.jfas.2017.05.036
doi: 10.1053/j.jfas.2017.05.036
pubmed: 29079238
Meulenkamp B, Stacey D, Fergusson D et al (2018) Protocol for treatment of Achilles tendon ruptures a systematic review with network meta-analysis. Syst Rev 7:1–7. https://doi.org/10.1186/s13643-018-0912-5
doi: 10.1186/s13643-018-0912-5
Stavenuiter XJR, Lubberts B, Prince RM et al (2019) Postoperative complications following repair of acute Achilles tendon rupture. Foot Ankle Int 40:679–686. https://doi.org/10.1177/1071100719831371
doi: 10.1177/1071100719831371
pubmed: 30808187
Ochen Y, Beks RB, Van Heijl M et al (2019) Operative treatment versus nonoperative treatment of Achilles tendon ruptures: systematic review and meta-analysis. BMJ 7(364):k5120. https://doi.org/10.1136/bmj.k5120
doi: 10.1136/bmj.k5120
Kryukova AE, Shpichka AI, Konarev PV et al (2018) Shape determination of bovine fibrinogen in solution using small-angle scattering data. Crystallogr Reports 63:871–873. https://doi.org/10.1134/S1063774518060202
doi: 10.1134/S1063774518060202
Frauz K, Teodoro L, Carneiro G et al (2019) Transected tendon treated with a new fibrin sealant alone or associated with adipose-derived stem Cells. Cells 8:56. https://doi.org/10.3390/cells8010056
doi: 10.3390/cells8010056
pmcid: 6357188
Ferreira RS, de Barros LC, Abbade LPF et al (2017) Heterologous fibrin sealant derived from snake venom: from bench to bedside-an overview. J Venom Anim Toxins Incl Trop Dis 23:1–12. https://doi.org/10.1186/s40409-017-0109-8
doi: 10.1186/s40409-017-0109-8
Gasparotto VPO, Landim-Alvarenga FC, Oliveira ALR et al (2014) A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells. Stem Cell Res Ther 5(3):78. https://doi.org/10.1186/scrt467
doi: 10.1186/scrt467
pubmed: 24916098
pmcid: 4100340
Orsi PR, Landim-Alvarenga FC, Justulin LA et al (2017) A unique heterologous fibrin sealant (HFS) as a candidate biological scaffold for mesenchymal stem cells in osteoporotic rats. Stem Cell Res Ther 8:1–14. https://doi.org/10.1186/s13287-017-0654-7
doi: 10.1186/s13287-017-0654-7
Cassaro CV, Justulin Jr. LA, Lima PR de, et al (2019) Fibrin biopolymer as scaffold candidate to treat bone defects in rats. J Venom Anim Toxins Incl Trop Dis 25:. https://doi.org/10.1590/1678-9199-jvatitd-2019-0027
Creste CFZ, Orsi PR, Landim-Alvarenga FC et al (2020) Highly effective fibrin biopolymer scaffold for stem cells upgrading bone regeneration. Materials (Basel) 13:2747. https://doi.org/10.3390/ma13122747
doi: 10.3390/ma13122747
Buchaim DV, Cassaro CV, Shindo JVTC, et al (2019) Unique heterologous fibrin biopolymer with hemostatic, adhesive, sealant, scaffold and drug delivery properties: a systematic review. J Venom Anim Toxins Incl Trop Dis 25 https://doi.org/10.1590/1678-9199-jvatitd-2019-0038
He M, Gan AWT, Lim AYT et al (2013) The effect of fibrin glue on tendon healing and adhesion formation in a rabbit model of flexor tendon injury and repair. J Plast Surg Hand Surg 47:509–512. https://doi.org/10.3109/2000656X.2013.789037
doi: 10.3109/2000656X.2013.789037
pubmed: 23621097
Rahal SC, Amaral MSP, Pai VD, et al (2004) Effect of fibrin glue derived from snake venom on the viability of autogenous split-thickness skin graft. J Venom Anim Toxins Incl Trop Dis 10. https://doi.org/10.1590/S1678-91992004000200006
de Barros CN, Miluzzi Yamada AL, Junior RSF et al (2016) A new heterologous fibrin sealant as a scaffold to cartilage repair—experimental study and preliminary results. Exp Biol Med 241:1410–1415. https://doi.org/10.1177/1535370215597192
doi: 10.1177/1535370215597192
Giordano S, Koskivuo I, Suominen E, Veräjänkorva E (2017) Tissue sealants may reduce haematoma and complications in face-lifts: a meta-analysis of comparative studies. J Plast Reconstr Aesthetic Surg 70:297–306. https://doi.org/10.1016/j.bjps.2016.11.028
doi: 10.1016/j.bjps.2016.11.028
Biscola NP, Cartarozzi LP, Ulian-Benitez S et al (2017) Multiple uses of fibrin sealant for nervous system treatment following injury and disease. J Venom Anim Toxins Incl Trop Dis 23:1–11. https://doi.org/10.1186/s40409-017-0103-1
doi: 10.1186/s40409-017-0103-1
Vaghardoost R, Momeni M, Kazemikhoo N et al (2018) Effect of low-level laser therapy on the healing process of donor site in patients with grade 3 burn ulcer after skin graft surgery (a randomized clinical trial). Lasers Med Sci 33:603–607. https://doi.org/10.1007/s10103-017-2430-4
doi: 10.1007/s10103-017-2430-4
pubmed: 29368069
De Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22:1–37. https://doi.org/10.1109/JSTQE.2016.2561201
doi: 10.1109/JSTQE.2016.2561201
Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94:199–212. https://doi.org/10.1111/php.12864
doi: 10.1111/php.12864
pubmed: 29164625
pmcid: 5844808
Tim CR, Bossini PS, Kido HW et al (2016) Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis. J Biomed Opt 21:088001. https://doi.org/10.1117/1.jbo.21.8.088001
doi: 10.1117/1.jbo.21.8.088001
Naterstad IF, Rossi RP, Marcos RL et al (2018) Comparison of photobiomodulation and anti-inflammatory drugs on tissue repair on collagenase-induced Achilles tendon inflammation in rats. Photomed Laser Surg 36:137–145. https://doi.org/10.1089/pho.2017.4364
doi: 10.1089/pho.2017.4364
pubmed: 29265910
Ferreira R, Silva R, Folha RA et al (2015) Achilles tendon vascularization of proximal, medial, and distal portion before and after partial lesion in rats treated with phototherapy. Photomed Laser Surg 33:579–584. https://doi.org/10.1089/pho.2015.3974
doi: 10.1089/pho.2015.3974
pubmed: 26666977
Guerra FDR, Vieira CP, dos Santos de Almeida M, et al (2014) Pulsed LLLT improves tendon healing in rats: a biochemical, organizational, and functional evaluation. Lasers Med Sci 29:805–811. https://doi.org/10.1007/s10103-013-1406-2
doi: 10.1007/s10103-013-1406-2
Ferreira Junior R, Barraviera B (2014) Arcabouço tridimensional para células tronco, processo de obtenção do mesmo e seu uso
Ferreira Junior R, Barraviera B, Barraviera S (2014) Selante de fibrina para uso tópico, método de formação do mesmo e seu uso
Karvat J, Antunes JS, Bernardino GR et al (2014) Effect of low-level LASER and neural mobilization on nociceptive threshold in experimental sciatica. Rev Dor 15:207–210. https://doi.org/10.5935/1806-0013.20140045
doi: 10.5935/1806-0013.20140045
Fearon A, Dahlstrom JE, Twin J et al (2014) The Bonar score revisited: region of evaluation significantly influences the standardized assessment of tendon degeneration. J Sci Med Sport 17:346–350. https://doi.org/10.1016/j.jsams.2013.07.008
doi: 10.1016/j.jsams.2013.07.008
pubmed: 23932935
Quinn KP, Golberg A, Broelsch GF et al (2015) An automated image processing method to quantify collagen fibre organization within cutaneous scar tissue. Exp Dermatol 24:78–80. https://doi.org/10.1111/exd.12553
doi: 10.1111/exd.12553
pubmed: 25256009
Khan RJ, Carey Smith RL (2010) Surgical interventions for treating acute Achilles tendon ruptures. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd003674.pub4
doi: 10.1002/14651858.cd003674.pub4
pubmed: 20927774
Wilkins R, Bisson LJ (2012) Operative versus nonoperative management of acute Achilles tendon ruptures: a quantitative systematic review of randomized controlled trials. Am J Sports Med 40:2154–2160. https://doi.org/10.1177/0363546512453293
doi: 10.1177/0363546512453293
pubmed: 22802271
Aller MA, Arias JL, Sánchez-Patán F, Arias J (2006) The inflammatory response: an efficient way of life. Med Sci Monit 12:225–234
Arias JI, Aller MA, Arias J (2009) Surgical inflammation: a pathophysiological rainbow. J Transl Med 7:1–15. https://doi.org/10.1186/1479-5876-7-19
doi: 10.1186/1479-5876-7-19
Tim CR, Bossini PS, Kido HW et al (2016) Effects of low level laser therapy on inflammatory and angiogenic gene expression during the process of bone healing: a microarray analysis. J Photochem Photobiol B Biol 154:8–15. https://doi.org/10.1016/j.jphotobiol.2015.10.028
doi: 10.1016/j.jphotobiol.2015.10.028
Pallotta RC, Bjordal JM, Frigo L et al (2012) Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med Sci 27:71–78
doi: 10.1007/s10103-011-0906-1
Boschi ES, Leite CE, Saciura VC et al (2008) Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40:500–508. https://doi.org/10.1002/lsm.20658
doi: 10.1002/lsm.20658
pubmed: 18727002
Albertini R, Aimbire FS, Correa F et al (2004) Effects of different protocol doses of low power gallium–aluminum–arsenate (Ga–Al–As) laser radiation (650 nm) on carrageenan induced rat paw ooedema. J Photochem Photobiol B Biol 74:101–107. https://doi.org/10.1016/j.jphotobiol.2004.03.002
doi: 10.1016/j.jphotobiol.2004.03.002
Marcos RL, Leal Junior ECP, de Moura MF et al (2011) Infrared (810 nm) low-level laser therapy in rat Achilles tendinitis: a consistent alternative to drugs. Photochem Photobiol 87:1447–1452. https://doi.org/10.1111/j.1751-1097.2011.00999.x
doi: 10.1111/j.1751-1097.2011.00999.x
pubmed: 21910734
Aimbire F, Albertine R, De Magalhães RG et al (2005) Effect of LLLT Ga-Al-As (685 nm) on LPS-induced inflammation of the airway and lung in the rat. Lasers Med Sci 20:11–20. https://doi.org/10.1007/s10103-005-0339-9
doi: 10.1007/s10103-005-0339-9
pubmed: 15965713
Albertini R, Aimbire FSC, Correa FI et al (2004) Effects of different protocol doses of low power gallium-aluminum-arsenate (Ga-Al-As) laser radiation (650 nm) on carrageenan induced rat paw ooedema. J Photochem Photobiol B Biol 74:101–107. https://doi.org/10.1016/j.jphotobiol.2004.03.002
doi: 10.1016/j.jphotobiol.2004.03.002
Mooney E, Loh C, Pu LLQ (2009) The use of fibrin glue in plastic surgery. Plast Reconstr Surg 124:989–992. https://doi.org/10.1097/PRS.0b013e3181b039a3
doi: 10.1097/PRS.0b013e3181b039a3
pubmed: 19730324
Marchac D, Sa’ndor GKB, (1994) Face lifts and sprayed fibrin glue: an outcome analysis of 200 patients. Br J Plast Surg 47:306–309. https://doi.org/10.1016/0007-1226(94)90087-6
doi: 10.1016/0007-1226(94)90087-6
pubmed: 8087367
Fredricks S (2001) Comment on zones of adherence: role in minimizing and preventing contour deformities in liposuction. Plast Reconstr Surg 108:2100. https://doi.org/10.1097/00006534-200112000-00044
doi: 10.1097/00006534-200112000-00044
pubmed: 11743365
Lee KC, Park SK, Lee KS (1991) Neurosurgical application of fibrin adhesive. Yonsei Med J 32:53–57
doi: 10.3349/ymj.1991.32.1.53
Yu MS, Jung MS, Kim BH et al (2018) Aerosolized fibrin sealant is effective for postoperative edema and ecchymosis in open rhinoplasty without osteotomy. J Oral Maxillofac Surg 76:2000.e1-2000.e8. https://doi.org/10.1016/j.joms.2018.05.019
doi: 10.1016/j.joms.2018.05.019
Yamada Y, Boo JS, Ozawa R et al (2003) Bone regeneration following injection of mesenchymal stem cells and fibrin glue with a biodegradable scaffold. J Cranio-Maxillofacial Surg 31:27–33. https://doi.org/10.1016/S1010-5182(02)00143-9
doi: 10.1016/S1010-5182(02)00143-9
Ferraro GC, Moraes JR, Shimano AC et al (2005) Effect of snake venom derived fibrin glue on the tendon healing in dogs: clinical and biomechanical study. J Venom Anim Toxins Incl Trop Dis 11:261–274. https://doi.org/10.1590/s1678-91992005000300005
doi: 10.1590/s1678-91992005000300005
Solakoǧlu C, Mahiroǧullari M, Çakmak S et al (2010) Fibrin sealant in the treatment of acute ruptures of the Achilles tendon: long-term results. Eklem Hast ve Cerrahisi 21:124–129
Ferguson REH, Rinker B (2006) The use of a hydrogel sealant on flexor tendon repairs to prevent adhesion formation. Ann Plast Surg 56:54–58. https://doi.org/10.1097/01.sap.0000181666.00492.0e
doi: 10.1097/01.sap.0000181666.00492.0e
pubmed: 16374097
Ferraro GC, Moraes JRE, Pereira GT, et al (2005) Clinical and morphological evaluation of snake venom derived fibrin glue on the tendon healing in dogs. J Venom Anim Toxins Incl Trop Dis 11:. https://doi.org/10.1590/S1678-91992005000400005
Tempfer H, Traweger A (2015) Tendon vasculature in health and disease. Front Physiol 18(6):330. https://doi.org/10.3389/fphys.2015.00330
doi: 10.3389/fphys.2015.00330
Hamblin MR, Huang YY, Sharma SK, Carroll J (2011) Biphasic dose response in low level light therapy-an update. Dose-Response 9:602–618. https://doi.org/10.2203/dose-response.11-009.Hamblin
doi: 10.2203/dose-response.11-009.Hamblin
pubmed: 22461763
pmcid: 3315174
Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23:1. https://doi.org/10.1117/1.jbo.23.12.120901
doi: 10.1117/1.jbo.23.12.120901
pubmed: 30550048
Sommer AP, Pinheiro ALB, Mester AR et al (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J Clin Laser Med Surg 19:29–33. https://doi.org/10.1089/104454701750066910
doi: 10.1089/104454701750066910
pubmed: 11547815
Martignago CCS, Tim CR, Assis L et al (2019) Comparison of two different laser photobiomodulation protocols on the viability of random skin flap in rats. Lasers Med Sci 34:1041–1047. https://doi.org/10.1007/s10103-018-2694-3
doi: 10.1007/s10103-018-2694-3
pubmed: 30565200
de Rosso MP, O, Rosa Júnior GM, Buchaim DV, et al (2017) Stimulation of morphofunctional repair of the facial nerve with photobiomodulation, using the end-to-side technique or a new heterologous fibrin sealant. J Photochem Photobiol B Biol 175:20–28. https://doi.org/10.1016/j.jphotobiol.2017.08.023
doi: 10.1016/j.jphotobiol.2017.08.023
de Oliveira Rosso MP, Oyadomari AT, Pomini KT et al (2020) Photobiomodulation therapy associated with heterologous fibrin biopolymer and bovine bone matrix helps to reconstruct long bones. Biomolecules 10:1–17. https://doi.org/10.3390/biom10030383
doi: 10.3390/biom10030383
de Oliveira Gonçalves JB, Buchaim DV, de Souza Bueno CR et al (2016) Effects of low-level laser therapy on autogenous bone graft stabilized with a new heterologous fibrin sealant. J Photochem Photobiol B Biol 162:663–668. https://doi.org/10.1016/j.jphotobiol.2016.07.023
doi: 10.1016/j.jphotobiol.2016.07.023
Voleti PB, Buckley MR, Soslowsky LJ (2012) Tendon healing: repair and regeneration. Annu Rev Biomed Eng 14:47–71. https://doi.org/10.1146/annurev-bioeng-071811-150122
doi: 10.1146/annurev-bioeng-071811-150122
pubmed: 22809137
Abbade LPF, Barraviera SRCS, Silvares MRC, Lima ABB de CO, Haddad GR, Gatti MAN, Medolago NB, Carneiro MTR, dos Santos LD, Ferreira RS, Barraviera B (2021) Treatment of chronic venous ulcers with heterologous fibrin sealant: A phase I/II clinical trial. Frontiers in Immunology 12