CircANKRD36 Knockdown Suppressed Cell Viability and Migration of LPS-Stimulated RAW264.7 Cells by Sponging MiR-330.
ARDS
ROCK1
circANKRD36
miR-330
Journal
Inflammation
ISSN: 1573-2576
Titre abrégé: Inflammation
Pays: United States
ID NLM: 7600105
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
12
01
2021
accepted:
17
05
2021
revised:
12
05
2021
pubmed:
28
5
2021
medline:
3
2
2022
entrez:
27
5
2021
Statut:
ppublish
Résumé
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an independent risk factor for mortality in patients with sepsis. In this study, we attempt to investigate the molecular mechanism of circANKRD36 underlying sepsis-induced ALI/ARDS in vitro. We first detected the altered circRNAs in serums of patients with sepsis-induced ARDS using circRNAs microarray. CircANKRD36 expression in serums and LPS-stimulated RAW264.7 cells was measured using qRT-PCR. CCK-8, cell migration, ELISA, and qRT-PCR were applied to the evaluation of cell biological behavior and inflammation reaction. The results showed that circANKRD36 expression was significantly elevated in serum of patients with sepsis-induced ARDS. Knockdown of circANKRD36 inhibited cell viability and migration and alleviated inflammation of lipopolysaccharide-stimulated (LPS-stimulated) RAW264.7 cells. Bioinformatic analysis demonstrated that circANKRD36 serves as a sponge for miR-330 and ROCK1 was directly targeted by miR-330. Furthermore, knockdown of circANKRD36 repressed ROCK1 expression by targeting miR-330. In short, circANKRD36 knockdown suppressed cell viability and migration of LPS-stimulated RAW264.7 cells in vitro via sponging miR-330, which may provide new ideas for the treatment of sepsis-induced ARDS.
Identifiants
pubmed: 34041646
doi: 10.1007/s10753-021-01480-5
pii: 10.1007/s10753-021-01480-5
doi:
Substances chimiques
ANKRD36 protein, human
0
Lipopolysaccharides
0
MIRN330 microRNA, mouse
0
MicroRNAs
0
Nuclear Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2044-2053Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Abraham, E., and M. Singer. 2007. Mechanisms of sepsis-induced organ dysfunction. Critical Care Medicine 35 (10): 2408–2416. https://doi.org/10.1097/01.ccm.0000282072.56245.91 .
doi: 10.1097/01.ccm.0000282072.56245.91
pubmed: 17948334
Adhikari, N.K., R.A. Fowler, S. Bhagwanjee, and G.D. Rubenfeld. 2010. Critical care and the global burden of critical illness in adults. Lancet 376 (9749): 1339–1346. https://doi.org/10.1016/S0140-6736(10)60446-1 .
doi: 10.1016/S0140-6736(10)60446-1
pubmed: 20934212
pmcid: 7136988
Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F. van Haren, A. Larsson, D. McAuley, M. Ranieri, G. Rubenfeld, B.T. Thompson, H. Wrigge, A.S. Slutsky, A. Pesenti, LUNG SAFE Investigators, and ESICM Trials Group. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800. https://doi.org/10.1001/jama.2016.0291 .
doi: 10.1001/jama.2016.0291
pubmed: 26903337
pmcid: 26903337
Chen, L.L., and L. Yang. 2015. Regulation of circRNA biogenesis. RNA Biology 12 (4): 381–388. https://doi.org/10.1080/15476286.2015.1020271 .
doi: 10.1080/15476286.2015.1020271
pubmed: 25746834
pmcid: 4615371
Cross, L.J., and M.A. Matthay. 2011. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Critical Care Clinics 27 (2): 355–377. https://doi.org/10.1016/j.ccc.2010.12.005 .
doi: 10.1016/j.ccc.2010.12.005
pubmed: 21440206
pmcid: 3073651
Doe, C., R. Bentley, D.J. Behm, R. Lafferty, R. Stavenger, D. Jung, M. Bamford, T. Panchal, E. Grygielko, L.L. Wright, G.K. Smith, Z. Chen, C. Webb, S. Khandekar, T. Yi, R. Kirkpatrick, E. Dul, L. Jolivette, J.P. Marino Jr., R. Willette, D. Lee, and E. Hu. 2007. Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activities. The Journal of Pharmacology and Experimental Therapeutics 320 (1): 89–98. https://doi.org/10.1124/jpet.106.110635 .
doi: 10.1124/jpet.106.110635
pubmed: 17018693
Fang, Y., X. Wang, W. Li, J. Han, J. Jin, F. Su, J. Zhang, W. Huang, F. Xiao, Q. Pan, and L. Zou. 2018. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. International Journal of Molecular Medicine 42 (4): 1865–1874. https://doi.org/10.3892/ijmm.2018.3783 .
doi: 10.3892/ijmm.2018.3783
pubmed: 30066828
pmcid: 6108858
Ganter, M.T., J. Roux, B. Miyazawa, M. Howard, J.A. Frank, G. Su, D. Sheppard, et al. 2008. Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circulation Research 102 (7): 804–812. https://doi.org/10.1161/CIRCRESAHA.107.161067 .
doi: 10.1161/CIRCRESAHA.107.161067
pubmed: 18276918
pmcid: 2739091
Gu, T.T., L. Song, T.Y. Chen, X. Wang, X.J. Zhao, X.Q. Ding, Y.Z. Yang, Y. Pan, D.M. Zhang, and L.D. Kong. 2017. Fructose downregulates miR-330 to induce renal inflammatory response and insulin signaling impairment: attenuation by morin. Molecular Nutrition & Food Research 61 (8). https://doi.org/10.1002/mnfr.201600760 .
Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13 (2): 85–94. https://doi.org/10.1016/s0898-6568(00)00149-2 .
doi: 10.1016/s0898-6568(00)00149-2
pubmed: 11257452
Gulyaeva, L.F., and N.E. Kushlinskiy. 2016. Regulatory mechanisms of microRNA expression. Journal of Translational Medicine 14 (1): 143. https://doi.org/10.1186/s12967-016-0893-x .
doi: 10.1186/s12967-016-0893-x
pubmed: 27197967
pmcid: 4873990
Guo, R., L. Zhang, and J. Meng. 2020. Circular RNA ANKRD36 attends to lipopolysaccharide-aroused MRC-5 cell injury via regulating microRNA-31-3p. Biofactors 46 (3): 391–401. https://doi.org/10.1002/biof.1592 .
doi: 10.1002/biof.1592
pubmed: 31793082
Hansen, T.B., T.I. Jensen, B.H. Clausen, J.B. Bramsen, B. Finsen, C.K. Damgaard, and J. Kjems. 2013. Natural RNA circles function as efficient microRNA sponges. Nature 495 (7441): 384–388. https://doi.org/10.1038/nature11993 .
doi: 10.1038/nature11993
pubmed: 23446346
Hua, Q., Y. Chen, Y. Liu, M. Li, Q. Diao, H. Xue, H. Zeng, L. Huang, and Y. Jiang. 2019. Circular RNA 0039411 is involved in neodymium oxide-induced inflammation and antiproliferation in a human bronchial epithelial cell line via sponging miR-93-5p. Toxicological Sciences 170 (1): 69–81. https://doi.org/10.1093/toxsci/kfz074 .
doi: 10.1093/toxsci/kfz074
pubmed: 30903189
Ishizaki, T. 2003. Rho-mediated signal transduction and its physiological roles. Nihon Yakurigaku Zasshi 121 (3): 153–162. https://doi.org/10.1254/fpj.121.153 .
doi: 10.1254/fpj.121.153
pubmed: 12673949
Johnson, E.R., and M.A. Matthay. 2010. Acute lung injury: epidemiology, pathogenesis, and treatment. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23 (4): 243–252. https://doi.org/10.1089/jamp.2009.0775 .
doi: 10.1089/jamp.2009.0775
pubmed: 20073554
pmcid: 3133560
Kawai, T., and S. Akira. 2007. TLR signaling. Seminars in Immunology 19 (1): 24–32. https://doi.org/10.1016/j.smim.2006.12.004 .
doi: 10.1016/j.smim.2006.12.004
pubmed: 17275323
Lasda, E., and R. Parker. 2014. Circular RNAs: diversity of form and function. RNA 20 (12): 1829–1842. https://doi.org/10.1261/rna.047126.114 .
doi: 10.1261/rna.047126.114
pubmed: 25404635
pmcid: 4238349
Levitt, J.E., and M.A. Matthay. 2012. Clinical review: early treatment of acute lung injury--paradigm shift toward prevention and treatment prior to respiratory failure. Critical Care 16 (3): 223. https://doi.org/10.1186/cc11144 .
doi: 10.1186/cc11144
pubmed: 22713281
pmcid: 3580596
Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (4): 402–408. https://doi.org/10.1006/meth.2001.1262 .
doi: 10.1006/meth.2001.1262
pubmed: 11846609
pmcid: 11846609
Lolis, E., and R. Bucala. 2003. Therapeutic approaches to innate immunity: severe sepsis and septic shock. Nature Reviews. Drug Discovery 2 (8): 635–645. https://doi.org/10.1038/nrd1153 .
doi: 10.1038/nrd1153
pubmed: 12904813
Meng, L., H. Cao, C. Wan, and L. Jiang. 2019. MiR-539-5p alleviates sepsis-induced acute lung injury by targeting ROCK1. Folia Histochemica et Cytobiologica 57 (4): 168–178. https://doi.org/10.5603/FHC.a2019.0019 .
doi: 10.5603/FHC.a2019.0019
pubmed: 31825519
Mubaid, S., J.F. Ma, A. Omer, K. Ashour, X.J. Lian, B.J. Sanchez, S. Robinson, A. Cammas, V. Dormoy-Raclet, S. di Marco, S.V. Chittur, S.A. Tenenbaum, and I.E. Gallouzi. 2019. HuR counteracts miR-330 to promote STAT3 translation during inflammation-induced muscle wasting. Proceedings of the National Academy of Sciences of the United States of America 116 (35): 17261–17270. https://doi.org/10.1073/pnas.1905172116 .
doi: 10.1073/pnas.1905172116
pubmed: 31405989
pmcid: 6717253
Parsons, P.E., M.A. Matthay, L.B. Ware, and M.D. Eisner. 2005. Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 288 (3): L426–L431. https://doi.org/10.1152/ajplung.00302.2004 .
doi: 10.1152/ajplung.00302.2004
pubmed: 15516488
Qin, M., W. Wang, H. Zhou, X. Wang, F. Wang, and H. Wang. 2020. Circular RNA circ_0003645 silencing alleviates inflammation and apoptosis via the NF-kappaB pathway in endothelial cells induced by oxLDL. Gene 755: 144900. https://doi.org/10.1016/j.gene.2020.144900 .
doi: 10.1016/j.gene.2020.144900
pubmed: 32554046
Ranieri, V.M., G.D. Rubenfeld, B.T. Thompson, N.D. Ferguson, E. Caldwell, E. Fan, L. Camporota, and A.S. Slutsky. 2012. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307 (23): 2526–2533. https://doi.org/10.1001/jama.2012.5669 .
doi: 10.1001/jama.2012.5669
pubmed: 22797452
pmcid: 22797452
Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353 (16): 1685–1693. https://doi.org/10.1056/NEJMoa050333 .
doi: 10.1056/NEJMoa050333
pubmed: 16236739
Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315 (8): 801–810. https://doi.org/10.1001/jama.2016.0287 .
doi: 10.1001/jama.2016.0287
pubmed: 26903338
pmcid: 4968574
Szabo, L., and J. Salzman. 2016. Detecting circular RNAs: bioinformatic and experimental challenges. Nature Reviews. Genetics 17 (11): 679–692. https://doi.org/10.1038/nrg.2016.114 .
doi: 10.1038/nrg.2016.114
pubmed: 27739534
pmcid: 5565156
Yang, J., M. Cheng, B. Gu, J. Wang, S. Yan, and D. Xu. 2020. CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NF-kappaB axis. Cell Death & Disease 11 (10): 833. https://doi.org/10.1038/s41419-020-03038-z .
doi: 10.1038/s41419-020-03038-z
Zhou, J.L., S. Deng, H.S. Fang, X.J. Du, H. Peng, and Q.J. Hu. 2020. Circular RNA circANKRD36 regulates Casz1 by targeting miR-599 to prevent osteoarthritis chondrocyte apoptosis and inflammation. Journal of Cellular and Molecular Medicine 25: 120–131. https://doi.org/10.1111/jcmm.15884 .
doi: 10.1111/jcmm.15884
pubmed: 33205602
pmcid: 7810932
Zuo, W., R. Tian, Q. Chen, L. Wang, Q. Gu, H. Zhao, C. Huang, Y. Liu, J. Li, X. Yang, L. Xu, B. Zhang, and Z. Liu. 2020. miR-330-5p inhibits NLRP3 inflammasome-mediated myocardial ischaemia-reperfusion injury by targeting TIM3. Cardiovascular Drugs and Therapy. https://doi.org/10.1007/s10557-020-07104-8 .