A novel BRD4-LEUTX fusion in a pediatric sarcoma with epithelioid morphology and diffuse S100 expression.
Antigens, CD34
/ genetics
Biomarkers, Tumor
/ genetics
Cell Cycle Proteins
/ genetics
Child
Female
Homeodomain Proteins
/ genetics
Humans
Oncogene Proteins, Fusion
/ genetics
Orbital Neoplasms
/ genetics
S100 Proteins
/ genetics
SMARCB1 Protein
/ genetics
SOXE Transcription Factors
/ genetics
Sarcoma
/ genetics
Transcription Factors
/ genetics
BRD4
LEUTX
S100 expression
epithelioid MPNST
Journal
Genes, chromosomes & cancer
ISSN: 1098-2264
Titre abrégé: Genes Chromosomes Cancer
Pays: United States
ID NLM: 9007329
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
revised:
18
05
2021
received:
31
03
2021
accepted:
18
05
2021
pubmed:
28
5
2021
medline:
19
3
2022
entrez:
27
5
2021
Statut:
ppublish
Résumé
Malignant epithelioid soft tissue tumors encompass a wide spectrum of lesions. Among them, Epithelioid Malignant Peripheral Nerve Sheath Tumors (MPNST) constitute a distinct subgroup, accounting for <5% of all MPNST. Epithelioid MPNST are infrequently associated with neurofibromatosis type 1, occasionally arise in a schwannoma and show diffuse S100 and CD34 expression, often combined with INI-1 loss. However, the molecular mechanisms underlying the tumorigenesis of epithelioid MPNST remain largely unknown. We describe a case of a 10-year-old girl with an epithelioid malignancy of the orbit. The tumor proved positive for S100, CD34 and SOX10, and, although INI-1 expression was maintained, the overall features suggested the possibility of an epithelioid MPNST, arising in an unusual location. NGS analysis revealed a novel in-frame BRD4-LEUTX fusion gene. LEUTX plays an important role in embryonal genome activation and its expression is mostly suppressed postnatally. We were able to detect increased levels of LEUTX transcript in the tumor, indicating that BRD4-LEUTX fusion leads to LEUTX re-activation. To our knowledge, this fusion has never been reported previously. Whether the current case represents an example of epithelioid MPNST or a distinct tumor entity remains to be determined.
Substances chimiques
Antigens, CD34
0
BRD4 protein, human
0
Biomarkers, Tumor
0
Cell Cycle Proteins
0
Homeodomain Proteins
0
LEUTX protein, human
0
Oncogene Proteins, Fusion
0
S100 Proteins
0
SMARCB1 Protein
0
SMARCB1 protein, human
0
SOX10 protein, human
0
SOXE Transcription Factors
0
Transcription Factors
0
Types de publication
Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
647-652Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Dey B, Srinivas BH, Badhe B, et al. Malignant epithelioid soft tissue tumors - a pathologist's perspective with review of literature. Cureus. 2020;12(12):e12263. http://doi.org/10.7759/cureus.12263.
Pemov A, Li H, Presley W, Wallace RM, Miller DT. Genetics of human malignant peripheral nerve sheath tumors. Neurooncol Adv. 2019;2(Suppl 1):i50-i61. http://doi.org/10.1093/noajnl/vdz049.
Kallen ME, Hornick JL. The 2020 WHO classification: what's new in soft tissue tumor pathology? Am J Surg Pathol. 2021;45(1):e1-e23.
Jo VY, Fletcher CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol. 2015;39(5):673-682. http://doi.org/10.1097/pas.0000000000001552.
Lodding P, Kindblom LG, Angervall L. Epithelioid malignant schwannoma. A study of 14 cases. Virchows Arch A Pathol Anat Histopathol. 1986;409:433-451. http://doi.org/10.1007/bf00705415.
Patra S, Ayyanar P, Padhi S, Purkait S, Muduly DK, Samal SC. Epithelioid malignant peripheral nerve sheath tumor (Epithelioid-MPNST) presenting as bleeding rectal polyp: a case report with systematic literature review. Am J Case Rep. 2019;20:1175-1181. http://doi.org/10.12659/ajcr.916251.
Hornick JL, Dal Cin P, Fletcher CD. Loss of INI-1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009;33(4):542-550.
Lopez-Nunez O, Surrey LF, Alaggio R, Herradura A, McGough RL, John I. Novel APOD-GLI1 rearrangement in a sarcoma of unknown lineage. Histopathology. 2021;78(2):338-340. http://doi.org/10.1111/his.14235.
Xu B, Chang K, Folpe AL, et al. Head and neck mesenchymal neoplasms with GLI1 gene alterations: a pathologic entity with distinct histologic features and potential for distant metastasis. Am J Surg Pathol. 2020;44(6):729-737. http://doi.org/10.1097/pas.0000000000001439.
Argani P, Harvey I, Nielsen GP, et al. EWSR1/FUS-CREB fusions define a distinctive malignant epithelioid neoplasm with predilection for mesothelial-lined cavities. Mod Pathol. 2020;33(11):2233-2243.
Erlandson RA, Woodruff JM. Peripheral nerve sheath tumors: an electron microscopic study of 43 cases. Cancer. 1982;49(2):273-287. http://doi.org/10.1002/1097-0142(19820115)49:2<273::aid-cncr2820490213>3.0.co;2-r.
Jouhilahti EM, Madissoon E, Vesterlund L, et al. The human PRD-like homeobox gene LEUTX has a central role in embryo genome activation. Development. 2016;143(19):3459-3469. http://doi.org/10.1242/dev.134510.
Katayama S, Ranga V, Jouhilahti EM, et al. Phylogenetic and mutational analyses of human LEUTX, a homeobox gene implicated in embryogenesis. Sci Rep. 2018;8(1):17421.
Hu W, Wang J, Yuan L, et al. Case report: a unique case of pediatric central nervous system Embryonal tumor harboring the CIC-LEUTX fusion, Germline NBN variant and somatic TSC2 mutation: expanding the Spectrum of CIC-rearranged Neoplasia. Front Oncol. 2020;10:598970.
Chinen Y, Taki T, Tsutsumi Y, et al. The leucine twenty homeobox (LEUTX) gene, which lacks a histone acetyltransferase domain, is fused to KAT6A in therapy-related acute myeloid leukemia with t(8;19)(p11;q13). Genes Chromosomes Cancer. 2014;53(4):299-308. http://doi.org/10.1002/gcc.22140.
Sramkova L, Cermakova J, Kutkova K, et al. Rapidly progressing acute myeloid leukemia with KAT6A-LEUTX fusion in a newborn. Pediatr Blood Cancer. 2020;67(10):e28663. http://doi.org/10.1002/pbc.28663.
Nakai S, Yamada S, Outani H, et al. Establishment of a novel human CIC-DUX4 sarcoma cell line, Kitra-SRS, with autocrine IGF-1R activation and metastatic potential to the lungs. Sci Rep. 2019;9(1):15812. http://doi.org/10.1038/s41598-019-52143-3.
Brčić I, Brodowicz T, Cerroni L, et al. Undifferentiated round cell sarcomas with CIC-DUX4 gene fusion: expanding the clinical spectrum. Pathology. 2020;52(2):236-242.
Yoshimoto T, Tanaka M, Homme M, et al. CIC-DUX4 induces small round cell sarcomas distinct from Ewing sarcoma. Cancer Res. 2017;77(11):2927-2937. http://doi.org/10.1158/0008-5472.can-16-3351.
Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17(1):164. http://doi.org/10.1186/s12943-018-0915-9.
Thompson Wicking K, Francis R, Stirnweiss A, et al. Novel BRD4-NUT fusion isoforms increase the pathogenic complexity in NUT midline carcinoma. Oncogene. 2013;32(39):4664-4674. http://doi.org/10.1038/onc.2012.487.
Wang R, You J. Mechanistic analysis of the role of bromodomain-containing protein 4 (BRD4) in BRD4-NUT oncoprotein-induced transcriptional activation. J Biol Chem. 2015;290(5):2744-2758. http://doi.org/10.1074/jbc.m114.600759.
Han X, Yu D, Gu R, et al. Roles of the BRD4 short isoform in phase separation and active gene transcription. Nat Struct Mol Biol. 2020;27(4):333-341. http://doi.org/10.1038/s41594-020-0394-8.
Wu SY, Lee CF, Lai HT, et al. Opposing functions of BRD4 isoforms in breast cancer. Mol Cell. 2020;78(6):1114-1132.e10. http://doi.org/10.1016/j.molcel.2020.04.034.
Asano N, Yoshida A, Ichikawa H, et al. Immunohistochemistry for trimethylated H3K27 in the diagnosis of malignant peripheral nerve sheath tumours. Histopathology. 2017;70(3):385-393.
WHO Classification of Tumours Editorial Board, ed. Malignant peripheral nerve sheath tumors. Soft Tissue and Bone Tumours. Vol 3. 5th ed. Lyone (France): International Agency for research on Cancer (IARC); 2020:254-258.