Autoinhibition of Cnn binding to γ-TuRCs prevents ectopic microtubule nucleation and cell division defects.
Animals
Animals, Genetically Modified
Cell Cycle Proteins
/ genetics
Cell Division
Drosophila Proteins
/ genetics
Drosophila melanogaster
/ cytology
Female
Fertility
HEK293 Cells
Homeodomain Proteins
/ genetics
Humans
Male
Microscopy, Confocal
Microscopy, Fluorescence
Microtubule-Associated Proteins
/ genetics
Microtubules
/ genetics
Nerve Tissue Proteins
/ genetics
Phosphorylation
Protein Binding
Protein Interaction Domains and Motifs
Structure-Activity Relationship
Journal
The Journal of cell biology
ISSN: 1540-8140
Titre abrégé: J Cell Biol
Pays: United States
ID NLM: 0375356
Informations de publication
Date de publication:
02 08 2021
02 08 2021
Historique:
received:
05
10
2020
revised:
25
03
2021
accepted:
05
05
2021
entrez:
27
5
2021
pubmed:
28
5
2021
medline:
21
10
2021
Statut:
ppublish
Résumé
γ-Tubulin ring complexes (γ-TuRCs) nucleate microtubules. They are recruited to centrosomes in dividing cells via binding to N-terminal CM1 domains within γ-TuRC-tethering proteins, including Drosophila Centrosomin (Cnn). Binding promotes microtubule nucleation and is restricted to centrosomes in dividing cells, but the mechanism regulating binding remains unknown. Here, we identify an extreme N-terminal CM1 autoinhibition (CAI) domain found specifically within the centrosomal isoform of Cnn (Cnn-C) that inhibits γ-TuRC binding. Robust binding occurs after removal of the CAI domain or with the addition of phosphomimetic mutations, suggesting that phosphorylation helps relieve inhibition. We show that regulation of Cnn binding to γ-TuRCs is isoform specific and that misregulation of binding can result in ectopic cytosolic microtubules and major defects during cell division. We also find that human CDK5RAP2 is autoinhibited from binding γ-TuRCs, suggesting conservation across species. Overall, our results shed light on how and why CM1 domain binding to γ-TuRCs is regulated.
Identifiants
pubmed: 34042945
pii: 212197
doi: 10.1083/jcb.202010020
pmc: PMC8164090
pii:
doi:
Substances chimiques
CDK5RAP2 protein, human
0
Cell Cycle Proteins
0
Drosophila Proteins
0
Homeodomain Proteins
0
Microtubule-Associated Proteins
0
Nerve Tissue Proteins
0
cnn protein, Drosophila
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 105653/Z/14/Z
Pays : United Kingdom
Informations de copyright
© 2021 Tovey et al.
Références
Trends Cell Biol. 2015 May;25(5):296-307
pubmed: 25544667
Cells. 2018 Aug 28;7(9):
pubmed: 30154378
Elife. 2014 Aug 22;3:e03399
pubmed: 25149451
J Cell Biol. 1999 Feb 22;144(4):721-33
pubmed: 10037793
J Cell Biol. 2021 Mar 1;220(3):
pubmed: 33496729
Cell. 2017 Jun 1;169(6):1078-1089.e13
pubmed: 28575671
Cell. 2017 Jun 1;169(6):1066-1077.e10
pubmed: 28575670
J Cell Sci. 2012 Oct 1;125(Pt 19):4445-56
pubmed: 23132930
J Cell Sci. 2017 Jan 15;130(2):406-419
pubmed: 27852835
Dev Cell. 2020 Jun 8;53(5):603-617.e8
pubmed: 32433913
Curr Biol. 2013 Jan 21;23(2):143-9
pubmed: 23273898
Genetics. 2009 Aug;182(4):979-97
pubmed: 19528326
Nat Struct Mol Biol. 2015 Feb;22(2):132-7
pubmed: 25599398
Nat Cell Biol. 2015 Nov;17(11):1422-34
pubmed: 26414402
Open Biol. 2018 Mar;8(3):
pubmed: 29514869
Nature. 2020 Feb;578(7795):467-471
pubmed: 31856152
Cell. 2020 Jan 9;180(1):165-175.e16
pubmed: 31862189
Genetics. 2015 Oct;201(2):685-706
pubmed: 26447129
Nat Cell Biol. 2015 Jul;17(7):907-16
pubmed: 26098575
J Cell Biol. 2021 Feb 1;220(2):
pubmed: 33399854
Mol Biol Cell. 2014 Jul 1;25(13):2017-25
pubmed: 24807905
Elife. 2021 May 05;10:
pubmed: 33949948
Open Biol. 2021 Feb;11(2):200325
pubmed: 33529551
Elife. 2018 Nov 13;7:
pubmed: 30422110
Curr Biol. 2014 Apr 14;24(8):896-903
pubmed: 24704079
Mol Biol Cell. 2007 Oct;18(10):4037-49
pubmed: 17671162
Elife. 2020 Jan 14;9:
pubmed: 31933481
Nat Rev Mol Cell Biol. 2011 Oct 12;12(11):709-21
pubmed: 21993292
Science. 2010 Apr 30;328(5978):593-9
pubmed: 20360068
J Cell Biol. 2016 Jun 20;213(6):679-92
pubmed: 27298324
Curr Biol. 2018 Jul 23;28(14):2314-2323.e6
pubmed: 29983314
Elife. 2020 Jul 13;9:
pubmed: 32657758
Elife. 2018 Sep 17;7:
pubmed: 30222109
Elife. 2014 Apr 30;3:e02208
pubmed: 24842996
J Cell Biol. 2010 Dec 13;191(6):1089-95
pubmed: 21135143
Elife. 2020 Jun 15;9:
pubmed: 32538784
Sci Adv. 2020 Dec 18;6(51):
pubmed: 33355144
Dev Cell. 2014 Mar 31;28(6):659-69
pubmed: 24656740
Nat Cell Biol. 2018 May;20(5):575-585
pubmed: 29695792
Curr Biol. 2018 Jun 4;28(11):1681-1691.e4
pubmed: 29779879
Curr Opin Cell Biol. 2017 Feb;44:93-101
pubmed: 27666167
Curr Biol. 2015 Jan 19;25(2):131-140
pubmed: 25532896
Nat Cell Biol. 2015 Sep;17(9):1089-93
pubmed: 26316453
Curr Biol. 2004 May 4;14(9):763-75
pubmed: 15120067
Essays Biochem. 2018 Dec 7;62(6):765-780
pubmed: 30315097
Curr Biol. 2017 Jul 10;27(13):1928-1940.e6
pubmed: 28669756
Spermatogenesis. 2012 Jan 1;2(1):11-22
pubmed: 22553486
Nat Cell Biol. 2015 Aug;17(8):1024-35
pubmed: 26192437