Pore-Spanning Plasma Membranes Derived from Giant Plasma Membrane Vesicles.
GPMVs
HEK-293 cells
fluorescence microscopy
ordered domains
porous substrates
Journal
ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991
Informations de publication
Date de publication:
09 Jun 2021
09 Jun 2021
Historique:
pubmed:
28
5
2021
medline:
29
7
2021
entrez:
27
5
2021
Statut:
ppublish
Résumé
Giant plasma membrane vesicles (GPMVs) are a highly promising model system for the eukaryotic plasma membrane. The unresolved challenge, however, is a path to surface-based structures that allows accessibility to both sides of the plasma membrane through high-resolution techniques. Such an approach would pave the way to advanced chip-based technologies for the analysis of complex cell surfaces to study the roles of membrane proteins, host-pathogen interactions, and many other bioanalytical and sensing applications. This study reports the generation of planar supported plasma membranes and for the first-time pore-spanning plasma membranes (PSPMs) derived from pure GPMVs that are spread on activated solid and highly ordered porous silicon substrates. GPMVs were produced by two different vesiculation agents and were first investigated with respect to their growth behavior and phase separation. Second, these GPMVs were spread onto silicon substrates to form planar supported plasma membrane patches. PSPMs were obtained by spreading of pure GPMVs on oxygen-plasma activated porous substrates with pore diameters of 3.5 μm. Fluorescence micrographs unambiguously showed that the PSPMs partially phase separate in a mobile ordered phase surrounded by a disordered phase, which was supported by cholesterol extraction using methyl-β-cyclodextrin.
Identifiants
pubmed: 34043315
doi: 10.1021/acsami.1c06404
doi:
Substances chimiques
Analgesics
0
Imidazoles
0
Lipid Bilayers
0
calmidazolium
4R9H38JAWL
Silicon
Z4152N8IUI
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM