Expression and cell transformation activity of dynactin-associated protein isoforms.

alternative splicing cell transformation dynactin-associated protein spheroid formation subcellular localization

Journal

FEBS open bio
ISSN: 2211-5463
Titre abrégé: FEBS Open Bio
Pays: England
ID NLM: 101580716

Informations de publication

Date de publication:
Aug 2021
Historique:
revised: 30 04 2021
received: 23 11 2020
accepted: 25 05 2021
medline: 28 5 2021
pubmed: 28 5 2021
entrez: 27 5 2021
Statut: ppublish

Résumé

Overexpression of human dynactin-associated protein isoform a (dynAPa) transforms NIH3T3 cells. DynAPa is a single-pass transmembrane protein with a carboxy-terminal region exposed to the outside of cells. According to the NCBI RefSeq database, there may be two other splicing variants of the encoding gene (dynAPb and c). DynAPa and c differ in some amino-terminal residues (NH

Identifiants

pubmed: 34043884
doi: 10.1002/2211-5463.13202
pmc: PMC8329785
doi:

Banques de données

RefSeq
['NM_173629.1', 'NM_001307955.1', 'XM_011525924.2']

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2110-2117

Subventions

Organisme : JSPS KAKENHI
ID : 24300343
Organisme : JSPS KAKENHI
ID : 15H04314

Informations de copyright

© 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20, 759-779.
Reck-Peterson SL, Redwine WB, Vale RD and Carter AP (2018) The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol 19, 382-398.
Olenick MA and Holzbaur ELF (2019) Dynein activators and adaptors at a glance. J Cell Sci 132, jcs227132.
Dwivedi D and Sharma M (2018) Multiple roles, multiple adaptors: dynein during cell cycle. Adv Exp Med Biol 1112, 13-30.
Okumura M, Natsume T, Kanemaki MT and Kiyomitsu T (2018) Dynein-dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble. Elife 7, e36559.
Kunoh T, Noda T, Koseki K, Sekigawa M, Takagi M, Shin-ya K, Goshima N, Iemura S, Natsume T, Wada S et al. (2010) A novel human dynactin-associated protein, dynAP, promotes activation of Akt, and ergosterol-related compounds induce dynAP-dependent apoptosis of human cancer cells. Mol Cancer Ther 9, 2934-2942.
Sternlicht H, Farr GW, Sternlicht ML, Driscoll JK, Willison K and Yaffe MB (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci USA 90, 9422-9426.
Echbarthi M, Vallin J and Grantham J (2018) Interactions between monomeric CCTdelta and p150(Glued): a novel function for CCTdelta at the cell periphery distinct from the protein folding activity of the molecular chaperone CCT. Exp Cell Res 370, 137-149.
Kunoh T, Wang W, Kobayashi H, Matsuzaki D, Togo Y, Tokuyama M, Hosoi M, Koseki K, Wada S, Nagai N et al. (2015) Human dynactin-associated protein transforms NIH3T3 cells to generate highly vascularized tumors with weak cell-cell interaction. PLoS One 10, e0135836.
Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K et al. (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13, 397-406.
Oltean S and Bates DO (2014) Hallmarks of alternative splicing in cancer. Oncogene 33, 5311-5318.
Climente-Gonzalez H, Porta-Pardo E, Godzik A and Eyras E (2017) The functional impact of alternative splicing in cancer. Cell Rep 20, 2215-2226.
Siegfried Z and Karni R (2018) The role of alternative splicing in cancer drug resistance. Curr Opin Genet Dev 48, 16-21.
Song X, Zeng Z, Wei H and Wang Z (2018) Alternative splicing in cancers: from aberrant regulation to new therapeutics. Semin Cell Dev Biol 75, 13-22.
Hanahan D and Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674.

Auteurs

Xiaobo Yin (X)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.

Shota Yamada (S)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.

Hiroaki Kobayashi (H)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.

Ryota Tanaka (R)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.

Yuki Togo (Y)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.

Miho Hosoi (M)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.
Frontier Pharma, Nagahama, Japan.

Mie Tsuchida (M)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.
Frontier Pharma, Nagahama, Japan.

Tatsuki Kunoh (T)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.

Shuichi Wada (S)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.

Toshinobu Nakamura (T)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.

Ryuzo Sasaki (R)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.
Frontier Pharma, Nagahama, Japan.

Tamio Mizukami (T)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.
Frontier Pharma, Nagahama, Japan.

Makoto Hasegawa (M)

Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan.

Classifications MeSH