Potential local adaptation of corals at acidified and warmed Nikko Bay, Palau.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 05 2021
Historique:
received: 19 01 2021
accepted: 12 05 2021
entrez: 28 5 2021
pubmed: 29 5 2021
medline: 24 11 2021
Statut: epublish

Résumé

Ocean warming and acidification caused by increases of atmospheric carbon dioxide are now thought to be major threats to coral reefs on a global scale. Here we evaluated the environmental conditions and benthic community structures in semi-closed Nikko Bay at the inner reef area in Palau, which has high pCO

Identifiants

pubmed: 34045589
doi: 10.1038/s41598-021-90614-8
pii: 10.1038/s41598-021-90614-8
pmc: PMC8159998
doi:

Substances chimiques

Carbon Dioxide 142M471B3J

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11192

Commentaires et corrections

Type : ErratumIn

Références

Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
doi: 10.1126/science.1152509 pubmed: 18079392
Pandolfi, J. M. et al. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).
doi: 10.1126/science.1204794 pubmed: 21778392
Hughes, T. P. et al. Global warming and recurrent mass bleaching of coral. Nature 543, 373–377 (2017).
doi: 10.1038/nature21707 pubmed: 28300113
Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079, doi: https://doi.org/10.1038/s41598-018-24430-9
Fabricius, K. E., Mieog, J. C., Colin, P. L., Idip, D. & Van Oppen, M. J. H. Identity and biodiversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol. Ecol. 13, 2445–2458 (2004).
doi: 10.1111/j.1365-294X.2004.02230.x pubmed: 15245416
Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B. 273, 2305–2312 (2006).
pubmed: 16928632 pmcid: 1636081 doi: 10.1098/rspb.2006.3567
Silverstein, R. N., Cunning, R. & Baker, A. C. Tenacious D: Symbiodinium in clade D remain in reef coral at both high and low temperature extremes despite impairment. J. Exp. Biol. 220, 1192–1196 (2017).
pubmed: 28108671
Kleypas, J. A. et al. Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research. 88 pp. Report of a workshop sponsored by NSF, NOAA and the U.S. Geological Survey. St. Petersburg, Florida (2006).
Orr, J. C. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
doi: 10.1038/nature04095 pubmed: 16193043
Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).
doi: 10.1126/science.1204794 pubmed: 21778392
van Woesik, R. et al. Climate-change refugia in the sheltered bays of Palau: analogous of future reefs. Ecol. Evol. 2, 2474–2484 (2012).
pubmed: 23145333 pmcid: 3492774 doi: 10.1002/ece3.363
Golbuu, Y. et al. Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35, 909–918 (2016).
doi: 10.1007/s00338-016-1457-5
Shamberger, K. E. F. et al. Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys. Res. Lett. 41, 499–504 (2014).
doi: 10.1002/2013GL058489
Golbuu, Y. et al. Palau’s coral reefs show differential habitat recovery following the 1998-bleaching event. Coral Reefs 26, 319–332 (2007).
doi: 10.1007/s00338-007-0200-7
Houk, P. et al. Predicting coral-reef futures from El Nino and Pacific decadal oscillation events. Sci. Rep. 10, 7735 (2020).
pubmed: 32385336 pmcid: 7210262 doi: 10.1038/s41598-020-64411-8
Colin, P. L. Ocean warming and the reefs of Palau. Oceanog. 31, 126 (2018).
doi: 10.5670/oceanog.2018.214
Gouezo, M. et al. Drivers of recovery and reassembly of coral reef communities. Proc. R. Soc. B 286, 20182908. https://doi.org/10.1098/rspb.2018.2908 (2019).
doi: 10.1098/rspb.2018.2908 pubmed: 30963834 pmcid: 6408889
Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Clim. Change 1, 165–169 (2011).
doi: 10.1038/nclimate1122
Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nature Clim. Change 3, 683–687 (2013).
doi: 10.1038/nclimate1855
Enochs, I. C. et al. Shift from coral to macroalgae dominance on a volcanically acidified reef. Nature Clim. Change 5, 1083–1088 (2015).
doi: 10.1038/nclimate2758
Crook, E. D. et al. Calcifying coral abundance near low-pH springs: implications for future ocean acidification. Coral Reefs 31, 239–245 (2012).
doi: 10.1007/s00338-011-0839-y
Yates, K. K. et al. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change. Biogeoscience 11, 4321–4337 (2014).
doi: 10.5194/bg-11-4321-2014
Barkley, H. C. et al. Changes in coral reef communities across a natural gradient in seawater pH. Science Adv. 1, e1500328 (2015).
doi: 10.1126/sciadv.1500328
Soliman, T., Fernandez-Silva, I., Kise, H., Kurihara, H. & Reimer, J. D. Population differentiation across small distances in a coral reef-associated vermetid (Ceraesignum maximum) in Palau. Coral Reefs 38, 1159–1172 (2019).
doi: 10.1007/s00338-019-01849-x
Camp, E. F. et al. Reef-building corals thrive within hot-acidified and deoxygenated waters. Sci. Rep. 7, 2434 (2017).
pubmed: 28550297 pmcid: 5446402 doi: 10.1038/s41598-017-02383-y
Richards, Z. T., Garcia, R. A., Wallace, C. C., Rosser, N. L. & Muir, P. R. A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte archipelago, Kimberley, Australia). PLoS ONE 10, e0117791 (2015).
pubmed: 25714443 pmcid: 4340616 doi: 10.1371/journal.pone.0117791
Manzello, D. P. et al. Poorly cemented coral reefs on the eastern tropical Pacific possible insights into reef development in a high-CO
pubmed: 18663220 pmcid: 2492517 doi: 10.1073/pnas.0712167105
Camp, E. F. et al. The future of coral reefs subject to rapid climate change: Lessons from natural extreme environments. Front. Mar. Sci. 5, 4. https://doi.org/10.3389/frmars.2018.00004 (2018).
doi: 10.3389/frmars.2018.00004
IPCC Climate Change 2013: The physical Science Basis. Working Group I Contributed to the Fifth Assessment Report the Intergovernmental Panel on Climate Change. Eds. Stocker T. F. et al. Cambridge University Press (2013).
Kayanne, H. et al. Seasonal and bleaching-induced changes in coral reef metabolism and CO
DeCarlo, T. M. et al. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification. J. Geophys. Res. Oceans 122, 745–761 (2017).
doi: 10.1002/2016JC012326
Silverman, J., Lazar, B., Cao, L., Caldeira, K. & Erez, J. Coral reefs may start dissolving when atmospheric CO
doi: 10.1029/2008GL036282
McGillis, W. R. et al. Direct covariance air-sea CO
doi: 10.1029/2000JC000506
Hii, Y.-S., Bolong, A.M.A., Yang, T.-T. & Liew, H.-C. Effect of elevated carbon dioxide on two scleractinian corals: Porites cylindrica (Dana, 1846) and Galaxea fascicularis (Linnaeus, 1767). J. Mar. Sci. 215196 (2009).
Suggett, D. J. et al. Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs 32, 327–337 (2013).
doi: 10.1007/s00338-012-0996-7
Kavousi, J., Reimer, J. D., Tanaka, Y. & Nakamura, T. Colony-specific investigations reveal highly variable responses among individual corals to ocean acidification and warming. Mar. Environ. Res. 109, 9–20 (2015).
doi: 10.1016/j.marenvres.2015.05.004 pubmed: 26009841
McCulloch, M., Falter, J., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Clim. Change 2, 623–627 (2012).
doi: 10.1038/nclimate1473
Fantazzini, P. et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat. Commun. 6, 7785. https://doi.org/10.1038/ncomms8785 (2015).
doi: 10.1038/ncomms8785 pubmed: 26183259
Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeleton density. Proc. Natl. Acad. Sci. USA 115, 1754–1759 (2018).
pubmed: 29378969 pmcid: 5828584 doi: 10.1073/pnas.1712806115
Hourbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).
doi: 10.1111/j.1469-185X.2008.00058.x
Edmunds, P. J. Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol. Oceanogr. 56, 2402–2410 (2011).
doi: 10.4319/lo.2011.56.6.2402
Kurihara, H., Suhara, Y., Mimura, I. & Golbuu, Y. Potential acclimatization and adaptative responses of adult and trans-generational coral larvae from naturally acidified habitat. Front. Mar. Sci. 7, 581160 (2020).
doi: 10.3389/fmars.2020.581160
LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 1–11 (2018).
doi: 10.1016/j.cub.2018.07.008
Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance?. Coral Reefs 30, 429–440 (2011).
doi: 10.1007/s00338-011-0721-y
Lewis, E. & Wallace, D. CO2SYS: program developed for the CO
Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. M. Measurement of the apparent dissociation constant of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanog. 18, 897–907 (1973).
doi: 10.4319/lo.1973.18.6.0897
Dickson, A.G. & Millero, F.J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A. Oceanogr. Res. Pap. 34, 1733–1743 (1987).
doi: 10.1016/0198-0149(87)90021-5
Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am. J. Sci. 183, 780–799 (1983).
doi: 10.2475/ajs.283.7.780
Anderson, L.G. et al. Determination of total alkalinity and total dissolved inorganic carbon. P. 127. In Grasshoff. K., Kremling, K., & Ehrhardt, M. (eds.). Methods of seawater analysis. Wiley-WCH (1999).
Watanabe, A. et al. Analysis of the seawater CO
doi: 10.4319/lo.2006.51.4.1614
Kohler, K. E. & Gill, S. M. Coral point count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).
doi: 10.1016/j.cageo.2005.11.009
Houk, P. & van Woesik, R. Coral reef benthic video surveys facilitate long-term monitoring in the Commonwealth of the Northern Mariana Islands: toward an optimal sampling strategy. Pac. Sci. 60, 175–187 (2006).
doi: 10.1353/psc.2006.0005
Davis, P. S. Short-term growth measurements of coral using an accurate buoyant weighing technique. Mar. Bio. 101, 389–395 (1989).
doi: 10.1007/BF00428135
Marsh, J. A. Primary productivity of reef-building calcareous red algae. Ecology 51, 255–263 (1970).
doi: 10.2307/1933661
Oksanen, J. et al. VEGAN: community Ecology Package-R package version 2.4–3. https://CRAN.R-project.org/package=vegan  (2017).
R Core Team. R: A Language and Environmental for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org R version 3.6.3 (2020).

Auteurs

Haruko Kurihara (H)

Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan. harukoku@sci.u-ryukyu.ac.jp.

Atsushi Watanabe (A)

Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 W8-13, Meguro, Tokyo, 152-8550, Japan.
The Ocean Policy Research Institute, The Sasakawa Peace Foundation, 1-15-16 Toranomon, Minato, Tokyo, 105-8524, Japan.

Asami Tsugi (A)

Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.

Izumi Mimura (I)

Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.

Chuki Hongo (C)

Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.

Takashi Kawai (T)

Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.

James Davis Reimer (JD)

Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.

Katsunori Kimoto (K)

Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan.

Marine Gouezo (M)

Palau International Coral Reef Center, 1 M-Dock Road, PO Box 7086, Koror, 96940, Republic of Palau.

Yimnang Golbuu (Y)

Palau International Coral Reef Center, 1 M-Dock Road, PO Box 7086, Koror, 96940, Republic of Palau.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH