Mitochondrial DNA variation and cancer.
Journal
Nature reviews. Cancer
ISSN: 1474-1768
Titre abrégé: Nat Rev Cancer
Pays: England
ID NLM: 101124168
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
accepted:
06
04
2021
pubmed:
29
5
2021
medline:
1
9
2021
entrez:
28
5
2021
Statut:
ppublish
Résumé
Variation in the mitochondrial DNA (mtDNA) sequence is common in certain tumours. Two classes of cancer mtDNA variants can be identified: de novo mutations that act as 'inducers' of carcinogenesis and functional variants that act as 'adaptors', permitting cancer cells to thrive in different environments. These mtDNA variants have three origins: inherited variants, which run in families, somatic mutations arising within each cell or individual, and variants that are also associated with ancient mtDNA lineages (haplogroups) and are thought to permit adaptation to changing tissue or geographic environments. In addition to mtDNA sequence variation, mtDNA copy number and perhaps transfer of mtDNA sequences into the nucleus can contribute to certain cancers. Strong functional relevance of mtDNA variation has been demonstrated in oncocytoma and prostate cancer, while mtDNA variation has been reported in multiple other cancer types. Alterations in nuclear DNA-encoded mitochondrial genes have confirmed the importance of mitochondrial metabolism in cancer, affecting mitochondrial reactive oxygen species production, redox state and mitochondrial intermediates that act as substrates for chromatin-modifying enzymes. Hence, subtle changes in the mitochondrial genotype can have profound effects on the nucleus, as well as carcinogenesis and cancer progression.
Identifiants
pubmed: 34045735
doi: 10.1038/s41568-021-00358-w
pii: 10.1038/s41568-021-00358-w
doi:
Substances chimiques
DNA, Mitochondrial
0
Reactive Oxygen Species
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
431-445Subventions
Organisme : Howard Hughes Medical Institute
Pays : United States
Références
Warburg, O. The Metabolism of Tumors (ed. Smith, R. R.) (Springer, 1931).
Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).
pubmed: 13298683
Pedersen, P. L. Tumor mitochondria and the bioenergetics of cancer cells. Prog. Exp. Tumor Res. 22, 190–274 (1978).
pubmed: 149996
Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981). This study reports the human mtDNA sequence.
pubmed: 7219534
Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999).
pubmed: 10508508
Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W. & Clayton, D. A. Sequence and gene organization of mouse mitochondrial DNA. Cell 26, 167–180 (1981).
pubmed: 7332926
Wallace, D. C. Mitochondrial genetic medicine. Nat. Genet. 50, 1642–1649 (2018).
pubmed: 30374071
Wallace, D. C. Mitochondrial DNA variation in human radiation and disease. Cell 163, 33–38 (2015).
pubmed: 26406369
pmcid: 4743751
Wallace, D. C. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242, 1427–1430 (1988). This study reports the first mtDNA nucleotide substitution disease.
pubmed: 3201231
Shoffner, J. M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA
pubmed: 2112427
Holt, I. J., Harding, A. E., Petty, R. K. & Morgan-Hughes, J. A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433 (1990).
pubmed: 2137962
pmcid: 1683641
Cortopassi, G. A. & Arnheim, N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18, 6927–6933 (1990).
pubmed: 2263455
pmcid: 332752
Corral-Debrinski, M. et al. Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. JAMA 266, 1812–1816 (1991).
pubmed: 1890710
Corral-Debrinski, M. et al. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet. 2, 324–329 (1992).
pubmed: 1303288
Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).
pubmed: 12509511
Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V. & Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226 (2004). This study reports that human mtDNA variants can be adaptive.
pubmed: 14716012
Brandon, M., Baldi, P. & Wallace, D. C. Mitochondrial mutations in cancer. Oncogene 25, 4647–4662 (2006). This article is the first proposal that cancer mtDNA mutations may be adaptive.
pubmed: 16892079
Petros, J. A. et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl Acad. Sci. USA 102, 719–724 (2005). This article shows that mtDNA mutations are important in prostate cancer.
pubmed: 15647368
pmcid: 545582
Arnold, R. S. et al. An inherited heteroplasmic mutation in mitochondrial gene COI in a patient with prostate cancer alters reactive oxygen, reactive nitrogen and proliferation. Biomed. Res. Int. 2013, 239257 (2013).
pubmed: 23509693
Wallace, D. C., Fan, W. & Procaccio, V. Mitochondrial energetics and therapeutics. Annu. Rev. Path. 5, 297–348 (2010).
Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).
pubmed: 19935646
pmcid: 2818760
Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31 (2010).
pubmed: 19796712
Letouze, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752 (2013).
pubmed: 23707781
Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).
pubmed: 22343901
pmcid: 3478770
Picard, M. et al. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc. Natl Acad. Sci. USA 111, E4033–E4042 (2014).
pubmed: 25192935
pmcid: 4183335
Kopinski, P. K. et al. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc. Natl Acad. Sci. USA 116, 16028–16035 (2019). This study is the first description of an mtDNA mutation causing changes in the nuclear epigenome.
pubmed: 31253706
pmcid: 6689928
MITOMAP. A Human Mitochondrial Genome Database. http://www.mitomap.org (2021).
Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).
pubmed: 22482806
pmcid: 3322232
Wallace, D. C. et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55, 601–610 (1988).
pubmed: 3180221
Goto, Y., Nonaka, I. & Horai, S. A mutation in the tRNA
pubmed: 2102678
Holt, I. J., Harding, A. E. & Morgan-Hughes, J. A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988).
pubmed: 2830540
Zeviani, M. et al. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 38, 1339–1346 (1988).
pubmed: 3412580
Shoffner, J. M. et al. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl Acad. Sci. USA 86, 7952–7956 (1989).
pubmed: 2554297
pmcid: 298190
Wallace, D. C., Ruiz-Pesini, E. & Mishmar, D. MtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harb. Symp. Quant. Biol. 68, 479–486 (2003).
pubmed: 15338651
Mishmar, D., Ruiz-Pesini, E., Brandon, M. & Wallace, D. C. Mitochondrial DNA-like sequences in the nucleus (NUMTs): insights into our African origins and the mechanism of foreign DNA integration. Hum. Mutat. 23, 125–133 (2004).
pubmed: 14722916
Torroni, A. et al. MtDNA and the origin of Caucasians. Identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am. J. Hum. Genet. 55, 760–776 (1994).
pubmed: 7942855
pmcid: 1918284
Torroni, A., Neel, J. V., Barrantes, R., Schurr, T. G. & Wallace, D. C. A mitochondrial DNA ‘clock’ for the Amerinds and its implication for timing their entry into North America. Proc. Natl Acad. Sci. USA 91, 1158–1162 (1994).
pubmed: 8302846
pmcid: 521473
Torroni, A. et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835–1850 (1996).
pubmed: 8978068
pmcid: 1207732
Schurr, T. G. & Wallace, D. C. Mitochondrial DNA diversity in Southeast Asian populations. Hum. Biol. 74, 431–452 (2002).
pubmed: 12180765
Chen, Y. S., Torroni, A., Excoffier, L., Santachiara-Benerecetti, A. S. & Wallace, D. C. Analysis of mtDNA variation in African populations reveals the most ancient of all human continent-specific haplogroups. Am. J. Hum. Genet. 57, 133–149 (1995).
pubmed: 7611282
pmcid: 1801234
Chen, Y. S. et al. mtDNA variation in the South African Kung and Khwe and their genetic relationships to other African populations. Am. J. Hum. Genet. 66, 1362–1383 (2000).
pubmed: 10739760
pmcid: 1288201
Kazuno, A. A. et al. Mitochondrial DNA haplogroup analysis in patients with bipolar disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet 150B, 243–247 (2009).
pubmed: 18546119
DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).
pubmed: 27386546
pmcid: 4928883
Courtney, K. D. et al. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab. 28, 793–800 e792 (2018).
pubmed: 30146487
pmcid: 6221993
Stewart, T. A., Yapa, K. T. & Monteith, G. R. Altered calcium signaling in cancer cells. Biochim. Biophys. Acta. 1848, 2502–2511 (2015).
pubmed: 25150047
Huang, P., Feng, L., Oldham, E. A., Keating, M. J. & Plunkett, W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407, 390–395 (2000).
pubmed: 11014196
Herrera-Cruz, M. S. & Simmen, T. Cancer: untethering mitochondria from the endoplasmic reticulum? Front. Oncol. 7, 105 (2017).
pubmed: 28603693
pmcid: 5445141
Verschoor, M. L. et al. Mitochondria and cancer: past, present, and future. Biomed. Res. Int. 2013, 612369 (2013).
pubmed: 23509753
pmcid: 3581248
Singh, K. K., Choudhury, A. R. & Tiwari, H. K. Numtogenesis as a mechanism for development of cancer. Semin. Cancer Biol. 47, 101–109 (2017).
pubmed: 28511886
pmcid: 5683947
Dayama, G., Emery, S. B., Kidd, J. M. & Mills, R. E. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res. 42, 12640–12649 (2014).
pubmed: 25348406
pmcid: 4227756
Leister, D. Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet. 21, 655–663 (2005).
pubmed: 16216380
Woischnik, M. & Moraes, C. T. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res. 12, 885–893 (2002).
pubmed: 12045142
pmcid: 1383742
Hazkani-Covo, E., Zeller, R. M. & Martin, W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 6, e1000834 (2010).
pubmed: 20168995
pmcid: 2820518
Choudhury, A. R. & Singh, K. K. Mitochondrial determinants of cancer health disparities. Semin. Cancer Biol. 47, 125–146 (2017).
pubmed: 28487205
pmcid: 5673596
Ramos, A. et al. Nuclear insertions of mitochondrial origin: database updating and usefulness in cancer studies. Mitochondrion 11, 946–953 (2011).
pubmed: 21907832
Payne, B. A. et al. Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet. 22, 384–390 (2013).
pubmed: 23077218
Goto, H. et al. Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. Genome Biol. 12, R59 (2011).
pubmed: 21699709
pmcid: 3218847
Davis, R. E. et al. Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 4526–4531 (1997).
pubmed: 9114023
pmcid: 20756
Wallace, D. C., Stugard, C., Murdock, D., Schurr, T. & Brown, M. D. Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc. Natl Acad. Sci. USA 94, 14900–14905 (1997).
pubmed: 9405711
pmcid: 25135
Srinivasainagendra, V. et al. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med. 9, 31 (2017).
pubmed: 28356157
pmcid: 5370490
Ju, Y. S. et al. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res. 25, 814–824 (2015). This study reports numtogenesis as a feature of cancer cells.
pubmed: 25963125
pmcid: 4448678
Shay, J. W., Baba, T., Zhan, Q. M., Kamimura, N. & Cuthbert, J. A. HeLaTG cells have mitochondrial DNA inserted into the c-myc oncogene. Oncogene 6, 1869–1874 (1991).
pubmed: 1923509
Gould, M. P. et al. PCR-free enrichment of mitochondrial DNA from human blood and cell lines for high quality Next-Generation DNA sequencing. PLoS ONE 10, e0139253 (2015).
pubmed: 26488301
pmcid: 4619561
Weerts, M. J. A. et al. Sensitive detection of mitochondrial DNA variants for analysis of mitochondrial DNA-enriched extracts from frozen tumor tissue. Sci. Rep. 8, 2261 (2018).
pubmed: 29396409
pmcid: 5797170
Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014).
pubmed: 25299156
pmcid: 4271547
Grandhi, S. et al. Heteroplasmic shifts in tumor mitochondrial genomes reveal tissue-specific signals of relaxed and positive selection. Hum. Mol. Genet. 26, 2912–2922 (2017). This study reports a survey of mtDNA variants in cancer.
pubmed: 28475717
pmcid: 5886292
Chinnery, P. F., Samuels, D. C., Elson, J. & Turnbull, D. M. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 360, 1323–1325 (2002).
pubmed: 12414225
Copeland, W. C., Wachsman, J. T., Johnson, F. M. & Penta, J. S. Mitochondrial DNA alterations in cancer. Cancer Invest. 20, 557–569 (2002).
pubmed: 12094550
Gasparre, G. et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum. Mol. Genet. 17, 986–995 (2008).
pubmed: 18156159
Bartoletti-Stella, A. et al. Mitochondrial DNA mutations in oncocytic adnexal lacrimal glands of the conjunctiva. Arch. Ophthalmol. 129, 664–666 (2011).
pubmed: 21555623
Pereira, L., Soares, P., Maximo, V. & Samuels, D. C. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer 12, 53 (2012).
pubmed: 22299657
pmcid: 3342922
Gasparre, G. et al. An inherited mitochondrial DNA disruptive mutation shifts to homoplasmy in oncocytic tumor cells. Hum. Mutat. 30, 391–396 (2009). This study shows that mtDNA mutants are important in oncocytomas.
pubmed: 19086058
Gopal, R. K. et al. Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma. Proc. Natl Acad. Sci. USA 115, E6283–E6290 (2018).
pubmed: 29915083
pmcid: 6142220
Kalsbeek, A. M. F., Chan, E. K. F., Corcoran, N. M., Hovens, C. M. & Hayes, V. M. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget 8, 71342–71357 (2017).
pubmed: 29050365
pmcid: 5642640
Kalsbeek, A. M. et al. Mutational load of the mitochondrial genome predicts pathological features and biochemical recurrence in prostate cancer. Aging 8, 2702–2712 (2016).
pubmed: 27705925
pmcid: 5191864
Hopkins, J. F. et al. Mitochondrial mutations drive prostate cancer aggression. Nat. Commun. 8, 656 (2017).
pubmed: 28939825
pmcid: 5610241
Yuan, Y. et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat. Genet. 52, 342–352 (2020).
pubmed: 32024997
pmcid: 7058535
Bunn, C. L., Wallace, D. C. & Eisenstadt, J. M. Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells. Proc. Natl Acad. Sci. USA 71, 1681–1685 (1974).
pubmed: 4525288
pmcid: 388302
Wallace, D. C., Bunn, C. L. & Eisenstadt, J. M. Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J. Cell Biol. 67, 174–188 (1975).
pubmed: 1176530
Trounce, I. A., Kim, Y. L., Jun, A. S. & Wallace, D. C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 264, 484–509 (1996).
pubmed: 8965721
McCormick, E. M. et al. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum. Mutat. 41, 2028–2057 (2020).
pubmed: 32906214
pmcid: 7717623
Ju, Y. S. et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife 3, e02935 (2014).
pmcid: 4371858
Anderson, A. P., Luo, X., Russell, W. & Yin, Y. W. Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. Nucleic Acids Res. 48, 817–829 (2020).
pubmed: 31799610
Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).
pubmed: 15164064
Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).
pubmed: 16020738
Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).
pubmed: 23001348
pmcid: 4371788
Xiao, J. et al. Mitochondrial biology and prostate cancer ethnic disparity. Carcinogenesis 39, 1311–1319 (2018).
pubmed: 30304372
pmcid: 6292412
Gopal, R. K. et al. Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hurthle cell carcinoma. Cancer Cell 34, 242–255 e245 (2018).
pubmed: 30107175
pmcid: 6121811
Weerts, M. J. A., Smid, M., Foekens, J. A., Sleijfer, S. & Martens, J. W. M. Mitochondrial RNA expression and single nucleotide variants in association with clinical parameters in primary breast cancers. Cancers 10, E500 (2018).
pubmed: 30544876
Jimenez-Morales, S., Perez-Amado, C. J., Langley, E. & Hidalgo-Miranda, A. Overview of mitochondrial germline variants and mutations in human disease: focus on breast cancer (review). Int. J. Oncol. 53, 923–936 (2018).
pubmed: 30015870
Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774–785 (2007).
pubmed: 17712357
Perrone, A. M. et al. Potential for mitochondrial DNA sequencing in the differential diagnosis of gynaecological malignancies. Int. J. Mol. Sci. 19, E2048 (2018).
pubmed: 30011887
Musicco, C. et al. Mitochondrial dysfunctions in type I endometrial carcinoma: exploring their role in oncogenesis and tumor progression. Int. J. Mol. Sci. 19, E2076 (2018).
pubmed: 30018222
Yuan, Y. et al. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer 15, 346 (2015).
pubmed: 25934296
pmcid: 4425906
Li, N. et al. Dissecting the expression landscape of mitochondrial genes in lung squamous cell carcinoma and lung adenocarcinoma. Oncol. Lett. 16, 3992–4000 (2018).
pubmed: 30128019
pmcid: 6096099
Tyagi, A. et al. Pattern of mitochondrial D-loop variations and their relation with mitochondrial encoded genes in pediatric acute myeloid leukemia. Mutat. Res. 810, 13–18 (2018).
pubmed: 29883862
Kim, H. R. et al. Spectrum of mitochondrial genome instability and implication of mitochondrial haplogroups in Korean patients with acute myeloid leukemia. Blood Res. 53, 240–249 (2018).
pubmed: 30310792
pmcid: 6170299
Vidone, M. et al. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. Int. J. Biochem. Cell Biol. 63, 46–54 (2015).
pubmed: 25668474
Fischer, R. [On the histochemical demonstration of oxidative enzymes in oncocytes of different organs]. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 334, 445–452 (1961).
pubmed: 13893170
Gasparre, G. et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl Acad. Sci. USA 104, 9001–9006 (2007).
pubmed: 17517629
pmcid: 1885617
Bonora, E. et al. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res. 66, 6087–6096 (2006).
pubmed: 16778181
Kurschner, G. et al. Renal oncocytoma characterized by the defective complex I of the respiratory chain boosts the synthesis of the ROS scavenger glutathione. Oncotarget 8, 105882–105904 (2017).
pubmed: 29285300
pmcid: 5739687
Burdon, R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free. Radic. Biol. Med. 18, 775–794 (1995).
pubmed: 7750801
Chouchani, E. T. et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 23, 254–263 (2016).
pubmed: 26777689
Arnold, R. S. et al. Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone 78, 81–86 (2015). This study shows the recurrence of the adaptive 10398 variant in prostate cancer metastases.
pubmed: 25952970
pmcid: 4466124
Kalsbeek, A. M. F. et al. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer. Prostate 78, 25–31 (2018).
pubmed: 29134670
Gupta, S. C. et al. Upsides and downsides of ROS for cancer: the roles of ROS in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal. 16, 1295–1322 (2012).
pubmed: 22117137
pmcid: 3324815
Lander, H. M. An essential role for free radicals and derived species in signal transduction. FASEB J. 11, 118–124 (1997).
pubmed: 9039953
Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).
pubmed: 25383517
pmcid: 4255242
Scialo, F. et al. Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab. 23, 725–734 (2016).
pubmed: 27076081
pmcid: 4835580
Slane, B. G. et al. Mutation of succinate dehydrogenase subunit C results in increased O
pubmed: 16885361
Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).
pubmed: 15879174
Goh, J. et al. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 11, 191 (2011). This study demonstrates that ROS can promote tumorigenesis.
pubmed: 21605372
pmcid: 3123323
Woo, D. K. et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am. J. Pathol. 180, 24–31 (2012).
pubmed: 22056359
pmcid: 3338350
Sun, Q., Arnold, R. S., Sun, C. Q. & Petros, J. A. A mitochondrial DNA mutation influences the apoptotic effect of statins on prostate cancer. Prostate 75, 1916–1925 (2015).
pubmed: 26383260
Howell, A. N. & Sager, R. Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines. Proc. Natl Acad. Sci. USA 75, 2358–2362 (1978).
pubmed: 276880
pmcid: 392552
Shidara, Y. et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 65, 1655–1663 (2005).
pubmed: 15753359
Ishikawa, K. et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320, 661–664 (2008).
pubmed: 18388260
Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313 (2005).
pubmed: 16286925
pmcid: 2637821
Nieborowska-Skorska, M. et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119, 4253–4263 (2012).
pubmed: 22411871
pmcid: 3359741
Reznik, E. et al. Mitochondrial DNA copy number variation across human cancers. eLife 5, e10769 (2016).
pubmed: 26901439
pmcid: 4775221
West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).
pubmed: 28393922
pmcid: 7289178
Ng, K. W., Marshall, E. A., Bell, J. C. & Lam, W. L. cGAS-STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol. 39, 44–54 (2018).
pubmed: 28830732
Guha, M. et al. Aggressive triple negative breast cancers have unique molecular signature on the basis of mitochondrial genetic and functional defects. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1060–1071 (2018).
pubmed: 29309924
pmcid: 6417497
Moreno-Loshuertos, R. et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat. Genet. 38, 1261–1268 (2006).
pubmed: 17013393
Giordano, C. et al. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy. Brain 137, 335–353 (2014).
pubmed: 24369379
Ruiz-Pesini, E. & Wallace, D. C. Evidence for adaptive selection acting on the tRNA and rRNA genes of the human mitochondrial DNA. Hum. Mutat. 27, 1072–1081 (2006).
pubmed: 16947981
Canter, J. A., Kallianpur, A. R., Parl, F. F., Millikan, R. C. & Mitochondrial, D. N. A. G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res. 65, 8028–8033 (2005).
pubmed: 16140977
Darvishi, K. et al. G10398A polymorphism imparts maternal haplogroup N a risk for breast and esophageal cancer. Cancer Lett. 249, 249–255 (2007).
pubmed: 17081685
Marom, S., Friger, M. & Mishmar, D. MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association. Sci. Rep. 7, 43449 (2017).
pubmed: 28230165
pmcid: 5322532
Yu, Y. et al. Mitochondrial ND3 G10398A mutation: a biomarker for breast cancer. Genet. Mol. Res. 14, 17426–17431 (2015).
pubmed: 26782384
Fang, H. et al. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer 10, 421 (2010).
pubmed: 20704735
pmcid: 2933623
Blein, S. et al. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Res. 17, 61 (2015).
pubmed: 25925750
pmcid: 4478717
Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018).
pubmed: 30049712
pmcid: 6120664
Booker, L. M. et al. North American white mitochondrial haplogroups in prostate and renal cancer. J. Urol. 175, 468–472; discussion 472-473 (2006).
pubmed: 16406974
Cano, D. et al. Mitochondrial DNA haplogroups and susceptibility to prostate cancer in a Colombian population. ISRN Oncol. 2014, 530675 (2014).
pubmed: 24616820
pmcid: 3927756
Li, Y. et al. Association of genes, pathways, and haplogroups of the mitochondrial genome with the risk of colorectal cancer: the multiethnic cohort. PLoS ONE 10, e0136796 (2015).
pubmed: 26340450
pmcid: 4560485
Poynter, J. N. et al. Association between mitochondrial DNA haplogroup and myelodysplastic syndromes. Genes Chromosomes Cancer 55, 688–693 (2016).
pubmed: 27121678
pmcid: 4940217
Liu, V. W. et al. Mitochondrial DNA variant 16189T>C is associated with susceptibility to endometrial cancer. Hum. Mutat. 22, 173–174 (2003).
pubmed: 12872259
Zhang, J. et al. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc. Natl Acad. Sci. USA 100, 1116–1121 (2003).
pubmed: 12538859
pmcid: 298736
Zhai, K., Chang, L., Zhang, Q., Liu, B. & Wu, Y. Mitochondrial C150T polymorphism increases the risk of cervical cancer and HPV infection. Mitochondrion 11, 559–563 (2011).
pubmed: 21385627
Kazuno, A. A. et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet. 2, e128 (2006).
pubmed: 16895436
pmcid: 1534079
Ji, F. et al. Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc. Natl Acad. Sci. USA 109, 7391–7396 (2012).
pubmed: 22517755
pmcid: 3358837
Vaupel, P. & Kelleher, D. K. Blood flow and oxygenation status of prostate cancers. Adv. Exp. Med. Biol. 765, 299–305 (2013).
pubmed: 22879048
Parrella, P. et al. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res. 61, 7623–7626 (2001).
pubmed: 11606403
Kenney, M. C. et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: Implications for population susceptibility to diseases. Biochim. Biophys. Acta. 1842, 208–219 (2014).
pubmed: 24200652
Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).
pubmed: 30046112
pmcid: 6329306
Guha, M. et al. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene 33, 5238–5250 (2014).
pubmed: 24186204
Amuthan, G. et al. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 20, 1910–1920 (2001).
pubmed: 11296224
pmcid: 125420
Guha, M., Srinivasan, S., Biswas, G. & Avadhani, N. G. Activation of a novel calcineurin-mediated insulin-like growth factor-1 receptor pathway, altered metabolism, and tumor cell invasion in cells subjected to mitochondrial respiratory stress. J. Biol. Chem. 282, 14536–14546 (2007).
pubmed: 17355970
Smith, A. L. et al. Age-associated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. Nat. Cancer 1, 976–989 (2020).
pubmed: 33073241
pmcid: 7116185
Bardella, C., Pollard, P. J. & Tomlinson, I. SDH mutations in cancer. Biochim. Biophys. Acta. 1807, 1432–1443 (2011).
pubmed: 21771581
Picaud, S. et al. Structural basis of fumarate hydratase deficiency. J. Inherit. Metab. Dis. 34, 671–676 (2011).
pubmed: 21445611
pmcid: 3109261
Li, X., Egervari, G., Wang, Y., Berger, S. L. & Lu, Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).
pubmed: 29930302
pmcid: 6907087
Su, X., Wellen, K. E. & Rabinowitz, J. D. Metabolic control of methylation and acetylation. Curr. Opin. Chem. Biol. 30, 52–60 (2016).
pubmed: 26629854
Campbell, S. L. & Wellen, K. E. Metabolic signaling to the nucleus in cancer. Mol. Cell 71, 398–408 (2018).
pubmed: 30075141
Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).
pubmed: 28512350
pmcid: 8127953
Balss, J. et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 116, 597–602 (2008).
pubmed: 18985363
Watanabe, T., Nobusawa, S., Kleihues, P. & Ohgaki, H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am. J. Pathol. 174, 1149–1153 (2009).
pubmed: 19246647
pmcid: 2671348
Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).
pubmed: 19228619
pmcid: 2820383
Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).
pubmed: 19657110
pmcid: 3201812
Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).
pubmed: 23630074
pmcid: 3650222
Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).
pubmed: 20171147
pmcid: 2849316
Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).
pubmed: 21251613
pmcid: 3229304
Klose, R. J. et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312–316 (2006).
pubmed: 16732292
Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243–269 (2006).
pubmed: 16756492
Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).
pubmed: 22343889
pmcid: 3351699
Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010). This study reports a link between IDH mutations and DNA methylation.
pubmed: 21130701
pmcid: 4105845
Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).
pubmed: 23393090
Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).
pubmed: 22343896
pmcid: 3656605
Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).
pubmed: 23558169
pmcid: 3985613
Popovici-Muller, J. et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med. Chem. Lett. 3, 850–855 (2012).
pubmed: 24900389
pmcid: 4025665
Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).
pubmed: 23558173
Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000). This study demonstrates the association of complex II mutations with hereditary paraganglioma.
pubmed: 10657297
Xiao, M. et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).
pubmed: 22677546
pmcid: 3387660
Cervera, A. M., Bayley, J. P., Devilee, P. & McCreath, K. J. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol. Cancer 8, 89 (2009).
pubmed: 19849834
pmcid: 2770992
Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).
pubmed: 11595184
Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).
pubmed: 11504942
pmcid: 55503
Enns, G. M. et al. Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status. PLoS ONE 9, e100001 (2014).
pubmed: 24941115
pmcid: 4062483
Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).
pubmed: 15652751
Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).
pubmed: 19561621
pmcid: 2754216
Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998).
pubmed: 9438854
Pantaleo, M. A. et al. SDHA loss-of-function mutations in KIT-PDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing. J. Natl Cancer Inst. 103, 983–987 (2011).
pubmed: 21505157
Janeway, K. A. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl Acad. Sci. USA 108, 314–318 (2011).
pubmed: 21173220
Miettinen, M. et al. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am. J. Surg. Pathol. 37, 234–240 (2013).
pubmed: 23282968
pmcid: 3545041
Killian, J. K. et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 3, 648–657 (2013).
pubmed: 23550148
pmcid: 4135374
Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).
pubmed: 19308066
Castro-Vega, L. J. et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum. Mol. Genet. 23, 2440–2446 (2014).
pubmed: 24334767
Wiese, M. & Bannister, A. J. Two genomes, one cell: mitochondrial-nuclear coordination via epigenetic pathways. Mol. Metab. 38, 100942 (2020).
pubmed: 32217072
pmcid: 7300384
Feinberg, A. P., Koldobskiy, M. A. & Gondor, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284–299 (2016).
pubmed: 26972587
pmcid: 4888057
Smiraglia, D. J., Kulawiec, M., Bistulfi, G. L., Gupta, S. G. & Singh, K. K. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol. Ther. 7, 1182–1190 (2008).
pubmed: 18458531
Meierhofer, D. et al. Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism. Br. J. Cancer 94, 268–274 (2006).
pubmed: 16404428
pmcid: 2361126
Wallace, D. C. Mitochondria and cancer: Warburg address. Cold Spring Harb. Symp. Quant. Biol. 70, 363–374 (2005).
pubmed: 16869773
Joshi, S. et al. The genomic landscape of renal oncocytoma identifies a metabolic barrier to tumorigenesis. Cell Rep. 13, 1895–1908 (2015).
pubmed: 26655904
pmcid: 4779191
Lott, M. T. et al. mtDNA variation and analysis using MITOMAP and MITOMASTER. Curr. Protoc. Bioinforma. https://doi.org/10.1002/0471250953.bi0123s44 (2013).
doi: 10.1002/0471250953.bi0123s44
Attimonelli, M. et al. HmtDB, a human mitochondrial genomic resource based on variability studies supporting population genetics and biomedical research. BMC Bioinformatics 6 (Suppl. 4), S4 (2005).
pubmed: 16351753
pmcid: 1866381
Falk, M. J. et al. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol. Genet. Metab. 114, 388–396 (2015).
pubmed: 25542617
Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).
pubmed: 29165669
Yao, Y. G., Kong, Q. P., Salas, A. & Bandelt, H. J. Pseudomitochondrial genome haunts disease studies. J. Med. Genet. 45, 769–772 (2008).
pubmed: 18611982
Schon, E. A., DiMauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13, 878–890 (2012).
pubmed: 23154810
pmcid: 3959762
Guo, Y., Li, J., Li, C. I., Shyr, Y. & Samuels, D. C. MitoSeek: extracting mitochondria information and performing high-throughput mitochondria sequencing analysis. Bioinformatics 29, 1210–1211 (2013).
pubmed: 23471301
pmcid: 4492415
Calabrese, C. et al. MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing. Bioinformatics 30, 3115–3117 (2014).
pubmed: 25028726
pmcid: 4201154
Li, M., Schroeder, R., Ko, A. & Stoneking, M. Fidelity of capture-enrichment for mtDNA genome sequencing: influence of NUMTs. Nucleic Acids Res. 40, e137 (2012).
pubmed: 22649055
pmcid: 3467033
Gaidzik, V. I. et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J. Clin. Oncol. 30, 1350–1357 (2012).
pubmed: 22430270
Young, A. L., Baysal, B. E., Deb, A. & Young, W. F. Jr. Familial malignant catecholamine-secreting paraganglioma with prolonged survival associated with mutation in the succinate dehydrogenase B gene. J. Clin. Endocrinol. Metab. 87, 4101–4105 (2002).
pubmed: 12213855
Neumann, H. P. et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002).
pubmed: 12000816
Maher, E. R. & Eng, C. The pressure rises: update on the genetics of phaeochromocytoma. Hum. Mol. Genet. 11, 2347–2354 (2002).
pubmed: 12351569
Stratakis, C. A. & Carney, J. A. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J. Intern. Med. 266, 43–52 (2009).
pubmed: 19522824
pmcid: 3129547
Belinsky, M. G., Rink, L. & von Mehren, M. Succinate dehydrogenase deficiency in pediatric and adult gastrointestinal stromal tumors. Front. Oncol. 3, 117 (2013).
pubmed: 23730622
pmcid: 3656383
Ricketts, C. J. et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J. Urol. 188, 2063–2071 (2012).
pubmed: 23083876
Schimke, R. N., Collins, D. L. & Stolle, C. A. Paraganglioma, neuroblastoma, and a SDHB mutation: Resolution of a 30-year-old mystery. Am. J. Med. Genet. A 152A, 1531–1535 (2010).
pubmed: 20503330
Grau, E. et al. There is no evidence that the SDHB gene is involved in neuroblastoma development. Oncol. Res. 15, 393–398 (2005).
pubmed: 16491957
Kim, S., Kim, D. H., Jung, W. H. & Koo, J. S. Succinate dehydrogenase expression in breast cancer. SpringerPlus 2, 299 (2013).
pubmed: 23888270
pmcid: 3710570
Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).
pubmed: 15987702
Lehtonen, R. et al. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am. J. Pathol. 164, 17–22 (2004).
pubmed: 14695314
pmcid: 1602244
Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).
pubmed: 11865300
Wei, M. H. et al. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J. Med. Genet. 43, 18–27 (2006).
pubmed: 15937070
Douwes Dekker, P. B. et al. SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J. Pathol. 201, 480–486 (2003).
pubmed: 14595761
Sciacovelli, M. et al. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab. 17, 988–999 (2013).
pubmed: 23747254
pmcid: 3677096
Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).
pubmed: 16098467