Thermodynamic assessment of the stability of bulk and nanoparticulate cobalt and nickel during dry and steam reforming of methane.
Journal
RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657
Informations de publication
Date de publication:
19 May 2021
19 May 2021
Historique:
entrez:
28
5
2021
pubmed:
29
5
2021
medline:
29
5
2021
Statut:
epublish
Résumé
The high reaction temperatures during steam and dry reforming of methane inevitably entail catalyst deactivation. Evaluation of the feasibility or potentially relevant mechanisms at play is of utmost importance to develop highly active and stable catalysts. Herein, various oxidation reactions of bulk-sized nickel and cobalt to the corresponding metal oxide or in the presence of a metal oxide carrier are evaluated thermodynamically and linked to approximated conditions during methane reforming. In particular cobalt aluminate, as well as cobalt or nickel titanates are likely to form. As oxidation to bulk-sized metal oxide is unlikely, a thermodynamic analysis of metallic nanoparticles was performed to calculate the size dependent stability against oxidation to nickel oxide or cobalt oxide in water and carbon dioxide-rich environments. The calculations indicate that nickel nanoparticles >3 nm and cobalt nanoparticles >10 nm are expected to withstand oxidation during steam and dry reforming of methane with stoichiometric feed compositions and methane conversion levels >10% at temperatures up to 1100 and 900 °C, respectively. Lastly, the reduced thermal stability of nanoparticles due to melting point suppression was assessed, leading to similar recommendations concerning minimum particle sizes.
Identifiants
pubmed: 34046175
doi: 10.1039/d1ra01856f
pii: d1ra01856f
pmc: PMC8132427
doi:
Types de publication
Journal Article
Langues
eng
Pagination
18187-18197Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
There are no conflicts to declare.
Références
ChemSusChem. 2014 Feb;7(2):451-6
pubmed: 24402833
Science. 2020 Feb 14;367(6479):777-781
pubmed: 32054760
J Am Chem Soc. 2013 Nov 6;135(44):16284-7
pubmed: 24147726
Dalton Trans. 2019 Sep 17;48(36):13858-13868
pubmed: 31483416
J Am Chem Soc. 2017 Mar 15;139(10):3706-3715
pubmed: 28191967
Chem Rev. 2014 Oct 22;114(20):10292-368
pubmed: 25253387
Sci Data. 2016 Sep 13;3:160080
pubmed: 27622853
Faraday Discuss. 2017 Apr 28;197:243-268
pubmed: 28198896
Angew Chem Int Ed Engl. 2014 Jan 27;53(5):1342-5
pubmed: 24449054
J Am Chem Soc. 2006 Dec 13;128(49):15756-64
pubmed: 17147385
Nat Mater. 2013 Jan;12(1):34-9
pubmed: 23142841
ACS Nano. 2017 Feb 28;11(2):1196-1203
pubmed: 28045491
Phys Rev B Condens Matter. 1992 Sep 15;46(11):7157-7168
pubmed: 10002423
Chem Commun (Camb). 2014 Jul 25;50(58):7866-9
pubmed: 24911967
Chem Soc Rev. 2006 Jul;35(7):583-92
pubmed: 16791330
J Am Chem Soc. 2013 Feb 6;135(5):1760-71
pubmed: 23272702
Nanoscale Res Lett. 2019 May 2;14(1):150
pubmed: 31049722
Nano Lett. 2014 Oct 8;14(10):5803-9
pubmed: 25198035
Chem Soc Rev. 2014 Nov 21;43(22):7813-37
pubmed: 24504089
J Phys Chem B. 2005 Mar 3;109(8):3575-7
pubmed: 16851395