Small mode volume plasmonic film-coupled nanostar resonators.


Journal

Nanoscale advances
ISSN: 2516-0230
Titre abrégé: Nanoscale Adv
Pays: England
ID NLM: 101738708

Informations de publication

Date de publication:
01 Jun 2020
Historique:
entrez: 28 5 2021
pubmed: 29 5 2021
medline: 29 5 2021
Statut: ppublish

Résumé

Confining and controlling light in extreme subwavelength scales are tantalizing tasks. In this work, we report a study of individual plasmonic film-coupled nanostar resonators where polarized plasmonic optical modes are trapped in ultrasmall volumes. Individual gold nanostars, separated from a flat gold film by a thin dielectric spacer layer, exhibit a strong light confinement between the sub-10 nm volume of the nanostar's tips and the film. Through dark field scattering measurements of many individual nanostars, a statistical observation of the scattered spectra is obtained and compared with extensive simulation data to reveal the origins of the resonant peaks. We observe that an individual nanostar on a flat gold film can result in a resonant spectrum with single, double or multiple peaks. Further, these resonant peaks are strongly polarized under white light illumination. Our simulation data revealed that the resonant spectrum of an individual film-coupled nanostar resonator is related to the symmetry of the nanostar, as well as the orientation of the nanostar relative to its placement on the gold substrate. Our results demonstrate a simple new method to create an ultrasmall mode volume and polarization sensitive plasmonic platform which could be useful for applications in sensing or enhanced light-matter interactions.

Identifiants

pubmed: 34046555
doi: 10.1039/d0na00262c
pmc: PMC8153380
mid: NIHMS1592170
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2397-2403

Subventions

Organisme : NCI NIH HHS
ID : R15 CA195509
Pays : United States

Déclaration de conflit d'intérêts

Conflicts of interest There are no conflicts to declare.

Références

Science. 2012 Aug 31;337(6098):1072-4
pubmed: 22936772
J Phys Chem C Nanomater Interfaces. 2016 Oct 20;120(41):23707-23715
pubmed: 27795752
Nat Mater. 2019 Jul;18(7):668-678
pubmed: 30936482
Nano Lett. 2010 May 12;10(5):1537-41
pubmed: 19813755
J Vis Exp. 2016 May 28;(111):
pubmed: 27285421
Nano Lett. 2008 Aug;8(8):2245-52
pubmed: 18590340
J Am Chem Soc. 2010 Dec 29;132(51):18103-14
pubmed: 21128627
Opt Lett. 2015 Dec 1;40(23):5638-41
pubmed: 26625070
Drug Metab Rev. 2020 May;52(2):299-318
pubmed: 32150480
Nanotechnology. 2008 Jan 9;19(1):015606
pubmed: 21730541
Chem Soc Rev. 2006 Nov;35(11):1084-94
pubmed: 17057837
Nano Lett. 2016 Jan 13;16(1):270-5
pubmed: 26606001
Nanoscale. 2018 Aug 23;10(33):15854-15864
pubmed: 30105338
Phys Rev Lett. 2017 Jun 2;118(22):223605
pubmed: 28621978
Chemistry. 2013 Feb 18;19(8):2839-47
pubmed: 23296491
Langmuir. 2012 Jun 19;28(24):8979-84
pubmed: 22353020
Nano Lett. 2013;13(12):5866-72
pubmed: 24199752
ACS Nano. 2010 Nov 23;4(11):6318-22
pubmed: 20942444
ACS Nano. 2014 Aug 26;8(8):7559-70
pubmed: 25077678
Nano Lett. 2007 Mar;7(3):729-32
pubmed: 17279802
Nano Lett. 2007 Feb;7(2):496-501
pubmed: 17256995
ACS Photonics. 2016 Jun 15;3(6):919-923
pubmed: 27347494
Small. 2016 Oct;12(37):5190-5199
pubmed: 27515573
Nature. 2012 Dec 6;492(7427):86-9
pubmed: 23222613
Adv Mater. 2012 Nov 20;24(44):OP314-20
pubmed: 23027548
J Phys Chem C Nanomater Interfaces. 2015 Jul 30;119(30):17408-17415
pubmed: 28018519
ACS Photonics. 2017 Feb 15;4(2):211-216
pubmed: 28255572
Nano Lett. 2006 Apr;6(4):683-8
pubmed: 16608264
Nat Commun. 2015 Jul 27;6:7788
pubmed: 26212857
ACS Omega. 2018 Feb 28;3(2):2202-2210
pubmed: 29503975
Nanoscale. 2017 Mar 17;9(11):3766-3773
pubmed: 28267160
J Phys Chem C Nanomater Interfaces. 2016 May 19;120(19):10530-10546
pubmed: 27239246
Appl Phys Lett. 2014 Jan 27;104(4):043108
pubmed: 24753622
Nanomedicine (Lond). 2017 Mar;12(5):457-471
pubmed: 28181456
Nano Lett. 2014 Aug 13;14(8):4797-802
pubmed: 25020029
RSC Adv. 2017 Mar 19;7(28):17137-17153
pubmed: 28603606
Sensors (Basel). 2015 Feb 05;15(2):3706-20
pubmed: 25664431
J Phys Chem Lett. 2016 Jan 21;7(2):354-62
pubmed: 26726134

Auteurs

Negar Charchi (N)

Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152.

Ying Li (Y)

Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588.

Margaret Huber (M)

Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152.

Elyahb Allie Kwizera (EA)

Department of Chemistry, The University of Memphis, Memphis, TN 38152.

Xiaohua Huang (X)

Department of Chemistry, The University of Memphis, Memphis, TN 38152.

Christos Argyropoulos (C)

Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588.

Thang Hoang (T)

Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152.

Classifications MeSH