Engineering a natural ligand-based CAR: directed evolution of the stress-receptor NKp30.
Animals
B7 Antigens
/ chemistry
CD28 Antigens
/ chemistry
CD3 Complex
/ chemistry
Cell Line, Tumor
Cell Separation
Cytokines
/ metabolism
Flow Cytometry
Gene Expression Profiling
Gene Library
Genetic Variation
HEK293 Cells
Humans
Immunotherapy
Kinetics
Ligands
Mice
Mutation
Natural Cytotoxicity Triggering Receptor 3
/ chemistry
Protein Conformation
Receptors, Chimeric Antigen
/ chemistry
Single-Chain Antibodies
/ chemistry
B7H6
CAR
Chimeric antigen receptor
Directed evolution
NKp30
Natural receptor
Journal
Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
04
02
2021
accepted:
17
05
2021
pubmed:
29
5
2021
medline:
18
1
2022
entrez:
28
5
2021
Statut:
ppublish
Résumé
B7H6, a stress-induced ligand which binds to the NK cell receptor NKp30, has recently emerged as a promising candidate for immunotherapy due to its tumor-specific expression on a broad array of human tumors. NKp30 can function as a chimeric antigen receptor (CAR) extracellular domain but exhibits weak binding with a fast on and off rate to B7H6 compared to the TZ47 anti-B7H6 single-chain variable fragment (scFv). Here, directed evolution using yeast display was employed to isolate novel NKp30 variants that bind to B7H6 with higher affinity compared to the native receptor but retain its fast association and dissociation profile. Two variants, CC3 and CC5, were selected for further characterization and were expressed as soluble Fc-fusion proteins and CARs containing CD28 and CD3ς intracellular domains. We observed that Fc-fusion protein forms of NKp30 and its variants were better able to bind tumor cells expressing low levels of B7H6 than TZ47, and that the novel variants generally exhibited improved in vitro tumor cell killing relative to NKp30. Interestingly, CAR T cells expressing the engineered variants produced unique cytokine signatures in response to multiple tumor types expressing B7H6 compared to both NKp30 and TZ47. These findings suggest that natural CAR receptors can be fine-tuned to produce more desirable signaling outputs while maintaining evolutionary advantages in ligand recognition relative to scFvs.
Identifiants
pubmed: 34046711
doi: 10.1007/s00262-021-02971-y
pii: 10.1007/s00262-021-02971-y
pmc: PMC8626535
mid: NIHMS1725137
doi:
Substances chimiques
B7 Antigens
0
CD28 Antigens
0
CD3 Complex
0
CD3 antigen, zeta chain
0
Cytokines
0
Ligands
0
NCR3LG1 protein, human
0
Natural Cytotoxicity Triggering Receptor 3
0
Receptors, Chimeric Antigen
0
Single-Chain Antibodies
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
165-176Subventions
Organisme : NIH HHS
ID : T32-AI007363
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA023108
Pays : United States
Organisme : NIH HHS
ID : P30-CA023108
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI089805
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI007363
Pays : United States
Organisme : NIH HHS
ID : T32-AI007363
Pays : United States
Organisme : NIH HHS
ID : T32-AI007363
Pays : United States
Organisme : NIH HHS
ID : P30-CA023108
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ahmad ZA, Yeap SK, Ali AM, et al (2012) ScFv antibody: principles and clinical application. Clin. Dev. Immunol. 2012
Song DG, Ye Q, Santoro S et al (2013) Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum Gene Ther 24:295–305. https://doi.org/10.1089/hum.2012.143
doi: 10.1089/hum.2012.143
pubmed: 23297870
pmcid: 3609608
Nikiforow S, Werner L, Murad J et al (2016) Safety Data from a first-in-human phase 1 Trial of NKG2D chimeric antigen receptor-T cells in AML/MDS and multiple myeloma. Blood 128:4052–4052. https://doi.org/10.1182/blood.v128.22.4052.4052
doi: 10.1182/blood.v128.22.4052.4052
Zhang T, Wu M-R, Sentman CL (2012) An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J Immunol 189:2290–2299. https://doi.org/10.4049/jimmunol.1103495
doi: 10.4049/jimmunol.1103495
pubmed: 22851709
Barber A, Rynda A, Sentman CL (2009) Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. J Immunol 183:6939–6947. https://doi.org/10.4049/jimmunol.0902000
doi: 10.4049/jimmunol.0902000
pubmed: 19915047
Shaffer DR, Savoldo B, Yi Z et al (2011) T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies. Blood 117:4304–4314. https://doi.org/10.1182/blood-2010-04-278218
doi: 10.1182/blood-2010-04-278218
pubmed: 21304103
pmcid: 3087480
Zhang T, Lemoi BA, Sentman CL (2005) Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood 106:1544–1551. https://doi.org/10.1182/blood-2004-11-4365
doi: 10.1182/blood-2004-11-4365
pubmed: 15890688
pmcid: 1895219
Wu M-R, Zhang T, Alcon A, Sentman CL (2015) DNAM-1-based chimeric antigen receptors enhance T cell effector function and exhibit in vivo efficacy against melanoma. Cancer Immunol Immunother. https://doi.org/10.1007/S00262-014-1648-2
doi: 10.1007/S00262-014-1648-2
pubmed: 26660339
Willuda J, Honegger A, Waibel R et al (1999) High Thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv Fragment. Cancer Res 59(22):5758–67
pubmed: 10582696
Chang ZNL, Chen YY (2017) CARs: synthetic immunoreceptors for cancer therapy and beyond. Trends Mol Med 23:430–450
doi: 10.1016/j.molmed.2017.03.002
pubmed: 28416139
pmcid: 5423782
Long AH, Haso WM, Shern JF et al (2015) 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21:581–590. https://doi.org/10.1038/nm.3838
doi: 10.1038/nm.3838
pubmed: 25939063
pmcid: 4458184
Ajina A, Maher J (2018) Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther 17:1795–1815
doi: 10.1158/1535-7163.MCT-17-1097
pubmed: 30181329
pmcid: 6130819
Zajc CU, Salzer B, Taft JM et al (2020) Driving CARs with alternative navigation tools: the potential of engineered binding scaffolds. FEBS J. https://doi.org/10.1111/febs.15523
doi: 10.1111/febs.15523
pubmed: 32794303
pmcid: 8048499
Landoni E, Fucá G, Wang J et al (2021) Modifications to the framework regions eliminate chimeric antigen receptor tonic signaling. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.cir-20-0451
doi: 10.1158/2326-6066.cir-20-0451
pubmed: 33547226
pmcid: 8137530
Salzer B, Schueller CM, Zajc CU et al (2020) Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nat Commun. https://doi.org/10.1038/s41467-020-17970-3
doi: 10.1038/s41467-020-17970-3
pubmed: 32820173
pmcid: 7441178
Brandt CS, Baratin M, Yi EC et al (2009) The B7 family member B7–H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206:1495–1503. https://doi.org/10.1084/jem.20090681
doi: 10.1084/jem.20090681
pubmed: 19528259
pmcid: 2715080
Kaifu T, Escalière B, Gastinel LN et al (2011) B7–H6/NKp30 interaction: a mechanism of alerting NK cells against tumors. Cell Mol Life Sci 68:3531–3539
doi: 10.1007/s00018-011-0802-7
pubmed: 21877119
Salimi M, Xue L, Jolin H et al (2016) Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production. J Immunol 196:45–54. https://doi.org/10.4049/jimmunol.1501102
doi: 10.4049/jimmunol.1501102
pubmed: 26582946
Rusakiewicz S, Nocturne G, Lazure T et al (2013) Sjögren’s syndrome: NCR3/NKp30 contributes to pathogenesis in primary Sjögren’s syndrome. Sci Transl Med 5:195ra96: https://doi.org/10.1126/scitranslmed.3005727
doi: 10.1126/scitranslmed.3005727
pubmed: 23884468
pmcid: 4237161
Fiegler N, Textor S, Arnold A et al (2013) Downregulation of the activating NKp30 ligand B7–H6 by HDAC inhibitors impairs tumor cell recognition by NK cells. Blood 122:684–693. https://doi.org/10.1182/blood-2013-02-482513
doi: 10.1182/blood-2013-02-482513
pubmed: 23801635
Hua CK, Gacerez AT, Sentman CL, Ackerman ME (2017) Development of unique cytotoxic chimeric antigen receptors based on human scFv targeting B7H6. Protein Eng Des Sel 30:713–721. https://doi.org/10.1093/protein/gzx051
doi: 10.1093/protein/gzx051
pubmed: 29040754
pmcid: 5914360
Wu MR, Zhang T, DeMars LR, Sentman CL (2015) B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene Ther 22:675–684. https://doi.org/10.1038/gt.2015.29
doi: 10.1038/gt.2015.29
pubmed: 25830550
pmcid: 4529373
Hudecek M, Lupo-Stanghellini MT, Kosasih PL et al (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 19:3153–3164. https://doi.org/10.1158/1078-0432.CCR-13-0330
doi: 10.1158/1078-0432.CCR-13-0330
pubmed: 23620405
pmcid: 3804130
Chmielewski M, Hombach A, Heuser C et al (2004) T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J Immunol 173:7647–7653. https://doi.org/10.4049/jimmunol.173.12.7647
doi: 10.4049/jimmunol.173.12.7647
pubmed: 15585893
Choi Y, Hua C, Sentman CL et al (2015) Antibody humanization by structure-based computational protein design. MAbs 7:1045–1057. https://doi.org/10.1080/19420862.2015.1076600
doi: 10.1080/19420862.2015.1076600
pubmed: 26252731
pmcid: 5045135
Angelini A, Chen TF, De Picciotto S et al (2015) Protein engineering and selection using yeast surface display. Methods Mol Biol 1319:3–36. https://doi.org/10.1007/978-1-4939-2748-7_1
doi: 10.1007/978-1-4939-2748-7_1
pubmed: 26060067
Fromant M, Blanquet S, Plateau P (1995) Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal Biochem 224:347–353. https://doi.org/10.1006/abio.1995.1050
doi: 10.1006/abio.1995.1050
pubmed: 7710092
Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768. https://doi.org/10.1038/nprot.2006.94
doi: 10.1038/nprot.2006.94
pubmed: 17406305
Ackerman M, Levary D, Tobon G et al (2009) Highly avid magnetic bead capture: an efficient selection method for de novo protein engineering utilizing yeast surface display. Biotechnol Prog 25:774–783. https://doi.org/10.1002/btpr.174
doi: 10.1002/btpr.174
pubmed: 19363813
pmcid: 2837102
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084
doi: 10.1002/jcc.20084
pubmed: 15264254
Li Y, Wang Q, Mariuzza RA (2011) Structure of the human activating natural cytotoxicity receptor NKp30 bound to its tumor cell ligand B7–H6. J Exp Med 208:703–714. https://doi.org/10.1084/jem.20102548
doi: 10.1084/jem.20102548
pubmed: 21422170
pmcid: 3135353
Xue Q, Bettini E, Paczkowski P et al (2017) Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J Immunother Cancer. https://doi.org/10.1186/s40425-017-0293-7
doi: 10.1186/s40425-017-0293-7
pubmed: 29157295
pmcid: 5697351
Liu X, Jiang S, Fang C et al (2015) Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 75:3596–3607. https://doi.org/10.1158/0008-5472.CAN-15-0159
doi: 10.1158/0008-5472.CAN-15-0159
pubmed: 26330166
pmcid: 4560113
Walker AJ, Majzner RG, Zhang L et al (2017) Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol Ther 25:2189–2201. https://doi.org/10.1016/j.ymthe.2017.06.008
doi: 10.1016/j.ymthe.2017.06.008
pubmed: 28676342
pmcid: 5589087
Stone JD, Chervin AS, Kranz DM (2009) T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126:165–176. https://doi.org/10.1111/j.1365-2567.2008.03015.x
doi: 10.1111/j.1365-2567.2008.03015.x
pubmed: 19125887
pmcid: 2632691
Ghorashian S, Kramer AM, Onuoha S et al (2019) Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med 25:1408–1414. https://doi.org/10.1038/s41591-019-0549-5
doi: 10.1038/s41591-019-0549-5
pubmed: 31477906
Park S, Shevlin E, Vedvyas Y et al (2017) Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci Rep. https://doi.org/10.1038/s41598-017-14749-3
doi: 10.1038/s41598-017-14749-3
pubmed: 29273815
pmcid: 5741774
Salter AI, Ivey RG, Kennedy JJ et al (2018) Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal. https://doi.org/10.1126/scisignal.aat6753
doi: 10.1126/scisignal.aat6753
pubmed: 30131370
pmcid: 6186424
Qasim W, Zhan H, Samarasinghe S et al (2017) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaj2013
doi: 10.1126/scitranslmed.aaj2013
pubmed: 28123068
Gillis S, Watson J (1980) Biochemical and biological characterization of lymphocyte regulatory molecules: V. Identification of an interleukin 2-producin human leukemia T cell line. J Exp Med 152:1709–1719. https://doi.org/10.1084/jem.152.6.1709
doi: 10.1084/jem.152.6.1709
pubmed: 6778951
Ma C, Cheung AF, Chodon T et al (2013) Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov 3:418–429. https://doi.org/10.1158/2159-8290.CD-12-0383
doi: 10.1158/2159-8290.CD-12-0383
pubmed: 23519018
pmcid: 3716460
Pabst T, Joncourt R, Shumilov E et al (2020) Analysis of IL-6 serum levels and CAR T cell-specific digital PCR in the context of cytokine release syndrome. Exp Hematol 88:7-14.e3. https://doi.org/10.1016/j.exphem.2020.07.003
doi: 10.1016/j.exphem.2020.07.003
pubmed: 32673688
Teachey DT, Lacey SF, Shaw PA et al (2016) Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 6:664–679. https://doi.org/10.1158/2159-8290.CD-16-0040
doi: 10.1158/2159-8290.CD-16-0040
pubmed: 27076371
pmcid: 5448406
van der Stegen SJC, Davies DM, Wilkie S et al (2013) Preclinical in vivo modeling of cytokine release syndrome induced by ErbB-retargeted human T cells: identifying a window of therapeutic opportunity? J Immunol 191:4589–4598. https://doi.org/10.4049/jimmunol.1301523
doi: 10.4049/jimmunol.1301523
pubmed: 24062490
Zhang Z, Jiang D, Yang H et al (2019) Modified CAR T cells targeting membrane-proximal epitope of mesothelin enhances the antitumor function against large solid tumor. Cell Death Dis 10:1–12. https://doi.org/10.1038/s41419-019-1711-1
doi: 10.1038/s41419-019-1711-1
Bradbury A (2003) scFvs and beyond. Drug Discov Today 8(16):737–739
doi: 10.1016/S1359-6446(03)02786-7
pubmed: 12944095
Sasmal DK, Feng W, Roy S et al (2020) TCR–pMHC bond conformation controls TCR ligand discrimination. Cell Mol Immunol 17:203–217. https://doi.org/10.1038/s41423-019-0273-6
doi: 10.1038/s41423-019-0273-6
pubmed: 31530899
Binici J, Hartmann J, Herrmann J et al (2013) A soluble fragment of the tumor antigen BCL2-associated athanogene 6 (BAG-6) is essential and sufficient for inhibition of NKp30 receptor-dependent cytotoxicity of natural killer cells. J Biol Chem 288:34295–34303. https://doi.org/10.1074/jbc.M113.483602
doi: 10.1074/jbc.M113.483602
pubmed: 24133212
pmcid: 3843045
Binici J, Koch J (2014) BAG-6, a jack of all trades in health and disease. Cell Mol Life Sci 71:1829–1837
doi: 10.1007/s00018-013-1522-y
pubmed: 24305946