Scan-rescan measurement repeatability of
18F-FDG
PET/MR
measurement repeatability
scan-rescan
vascular inflammation
Journal
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
ISSN: 1532-6551
Titre abrégé: J Nucl Cardiol
Pays: United States
ID NLM: 9423534
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
24
08
2020
accepted:
07
03
2021
pubmed:
29
5
2021
medline:
5
8
2022
entrez:
28
5
2021
Statut:
ppublish
Résumé
Non-invasive positron emission tomography (PET) of vascular inflammation and atherosclerotic plaque by identifying increased uptake of
Identifiants
pubmed: 34046803
doi: 10.1007/s12350-021-02627-5
pii: 10.1007/s12350-021-02627-5
doi:
Substances chimiques
Radiopharmaceuticals
0
Fluorodeoxyglucose F18
0Z5B2CJX4D
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1660-1670Subventions
Organisme : British Heart Foundation
ID : FS/13/77/30488
Pays : United Kingdom
Organisme : British Heart Foundation
ID : FS/14/78/31020
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL071021
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. American Society of Nuclear Cardiology.
Références
Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282-92. https://doi.org/10.1161/ATVBAHA.108.179739 .
doi: 10.1161/ATVBAHA.108.179739
pubmed: 20554950
Rudd JHF, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708-11.
doi: 10.1161/01.CIR.0000020548.60110.76
Davies JR, Rudd JHF, Fryer TD, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke. 2005;36(12):2642-7. https://doi.org/10.1161/01.STR.0000190896.67743.b1 .
doi: 10.1161/01.STR.0000190896.67743.b1
pubmed: 16282536
Dunphy MPS, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med Off Publ Soc Nucl Med. 2005;46(8):1278-84.
Tawakol A, Migrino RQ, Bashian GG, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48(9):1818-24. https://doi.org/10.1016/j.jacc.2006.05.076 .
doi: 10.1016/j.jacc.2006.05.076
pubmed: 17084256
Niccoli Asabella A, Ciccone MM, Cortese F, et al. Higher reliability of 18F-FDG target background ratio compared to standardized uptake value in vulnerable carotid plaque detection: a pilot study. Ann Nucl Med. 2014;28(6):571-9. https://doi.org/10.1007/s12149-014-0850-9 .
doi: 10.1007/s12149-014-0850-9
pubmed: 24737136
Ogawa M, Magata Y, Kato T, et al. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med Off Publ Soc Nucl Med. 2006;47(11):1845-50.
Tahara N, Kai H, Ishibashi M, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48(9):1825-31. https://doi.org/10.1016/j.jacc.2006.03.069 .
doi: 10.1016/j.jacc.2006.03.069
pubmed: 17084257
Rudd JHF, Myers KS, Bansilal S, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50(9):892-6. https://doi.org/10.1016/j.jacc.2007.05.024 .
doi: 10.1016/j.jacc.2007.05.024
pubmed: 17719477
Rudd JHF, Myers KS, Bansilal S, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med Off Publ Soc Nucl Med. 2008;49(6):871-8. https://doi.org/10.2967/jnumed.107.050294 .
doi: 10.2967/jnumed.107.050294
Izquierdo-Garcia D, Davies JR, Graves MJ, et al. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods. Stroke. 2009;40(1):86-93. https://doi.org/10.1161/STROKEAHA.108.521393 .
doi: 10.1161/STROKEAHA.108.521393
pubmed: 18927453
van der Valk FM, Verweij SL, Zwinderman KAH, et al. Thresholds for arterial wall inflammation quantified by (18)F-FDG PET imaging: implications for vascular interventional studies. JACC Cardiovasc Imaging. 2016;9(10):1198-207. https://doi.org/10.1016/j.jcmg.2016.04.007 .
doi: 10.1016/j.jcmg.2016.04.007
pubmed: 27639759
pmcid: 5056585
Mizoguchi M, Tahara N, Tahara A, et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging. 2011;4(10):1110-8. https://doi.org/10.1016/j.jcmg.2011.08.007 .
doi: 10.1016/j.jcmg.2011.08.007
pubmed: 21999871
Duivenvoorden R, Mani V, Woodward M, et al. Relationship of serum inflammatory biomarkers with plaque inflammation assessed by FDG PET/CT: the dal-PLAQUE study. JACC Cardiovasc Imaging. 2013;6(10):1087-94. https://doi.org/10.1016/j.jcmg.2013.03.009 .
doi: 10.1016/j.jcmg.2013.03.009
pubmed: 24135322
Tawakol A, Fayad ZA, Mogg R, et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol. 2013;62(10):909-17. https://doi.org/10.1016/j.jacc.2013.04.066 .
doi: 10.1016/j.jacc.2013.04.066
pubmed: 23727083
Emami H, Vucic E, Subramanian S, et al. The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial. Atherosclerosis. 2015;240(2):490-6. https://doi.org/10.1016/j.atherosclerosis.2015.03.039 .
doi: 10.1016/j.atherosclerosis.2015.03.039
pubmed: 25913664
Joseph P, Ishai A, Mani V, et al. Short-term changes in arterial inflammation predict long-term changes in atherosclerosis progression. Eur J Nucl Med Mol Imaging. 2017;44(1):141-50. https://doi.org/10.1007/s00259-016-3524-0 .
doi: 10.1007/s00259-016-3524-0
pubmed: 27738728
Figueroa AL, Abdelbaky A, Truong QA, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6(12):1250-9. https://doi.org/10.1016/j.jcmg.2013.08.006 .
doi: 10.1016/j.jcmg.2013.08.006
pubmed: 24269261
Rominger A, Saam T, Wolpers S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med Off Publ Soc Nucl Med. 2009;50(10):1611-20. https://doi.org/10.2967/jnumed.109.065151 .
doi: 10.2967/jnumed.109.065151
Vesey AT, Dweck MR, Fayad ZA. Utility of combining PET and MR imaging of carotid plaque. Neuroimaging Clin N Am. 2016;26(1):55-68. https://doi.org/10.1016/j.nic.2015.09.005 .
doi: 10.1016/j.nic.2015.09.005
pubmed: 26610660
Makowski MR, Botnar RM. MR imaging of the arterial vessel wall: molecular imaging from bench to bedside. Radiology. 2013;269(1):34-51. https://doi.org/10.1148/radiol.13102336 .
doi: 10.1148/radiol.13102336
pubmed: 24062561
Brinjikji W, Huston J, Rabinstein AA, Kim G-M, Lerman A, Lanzino G. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg. 2016;124(1):27-42. https://doi.org/10.3171/2015.1.JNS142452 .
doi: 10.3171/2015.1.JNS142452
pubmed: 26230478
Wasserman BA. Advanced contrast-enhanced MRI for looking beyond the lumen to predict stroke: building a risk profile for carotid plaque. Stroke. 2010;41(10 Suppl):S12-6. https://doi.org/10.1161/STROKEAHA.110.596288 .
doi: 10.1161/STROKEAHA.110.596288
pubmed: 20876485
van Hoof RHM, Heeneman S, Wildberger JE, Kooi ME. Dynamic contrast-enhanced MRI to study atherosclerotic plaque microvasculature. Curr Atheroscler Rep. 2016;18(6):33. https://doi.org/10.1007/s11883-016-0583-4 .
doi: 10.1007/s11883-016-0583-4
pubmed: 27115144
pmcid: 4846686
Saba L, Saam T, Jäger HR, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurol. 2019;18(6):559-72. https://doi.org/10.1016/S1474-4422(19)30035-3 .
doi: 10.1016/S1474-4422(19)30035-3
pubmed: 30954372
Hyafil F, Schindler A, Sepp D, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging. 2016;43(2):270-9. https://doi.org/10.1007/s00259-015-3201-8 .
doi: 10.1007/s00259-015-3201-8
pubmed: 26433367
Silvera SS, Aidi HE, Rudd JHF, et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis. 2009;207(1):139-43. https://doi.org/10.1016/j.atherosclerosis.2009.04.023 .
doi: 10.1016/j.atherosclerosis.2009.04.023
pubmed: 19467659
pmcid: 3436906
Saito H, Kuroda S, Hirata K, et al. Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc Dis Basel Switz. 2013;35(4):370-7. https://doi.org/10.1159/000348846 .
doi: 10.1159/000348846
Calcagno C, Ramachandran S, Izquierdo-Garcia D, et al. The complementary roles of dynamic contrast-enhanced MRI and 18F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis. Eur J Nucl Med Mol Imaging. 2013;40(12):1884-93. https://doi.org/10.1007/s00259-013-2518-4 .
doi: 10.1007/s00259-013-2518-4
pubmed: 23942908
Catana C. Principles of simultaneous PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):231-43. https://doi.org/10.1016/j.mric.2017.01.002 .
doi: 10.1016/j.mric.2017.01.002
pubmed: 28390525
pmcid: 5385858
Karakatsanis NA, Abgral R, Trivieri MG, et al. Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01928-0 .
doi: 10.1007/s12350-019-01928-0
Robson PM, Vergani V, Benkert T, et al. Assessing the qualitative and quantitative impacts of simple two-class vs multiple tissue-class MR-based attenuation correction for cardiac PET/MR. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-019-02002-5 .
doi: 10.1007/s12350-019-02002-5
Ungar B, Pavel A, Robson P, et al. A preliminary 18F-FDG-PET/MRI study shows increased vascular inflammation in moderate-to-severe atopic dermatitis. J Allergy Clin Immunol Pract. 2020;8:3500.
doi: 10.1016/j.jaip.2020.07.018
Robson PM, Dweck MR, Trivieri MG, et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc Imaging. 2017. https://doi.org/10.1016/j.jcmg.2016.09.029 .
doi: 10.1016/j.jcmg.2016.09.029
pubmed: 28982570
pmcid: 6415529
Mani V, Woodward M, Samber D, et al. Predictors of change in carotid atherosclerotic plaque inflammation and burden as measured by 18-FDG-PET and MRI, respectively, in the dal-PLAQUE study. Int J Cardiovasc Imaging. 2014;30(3):571-82. https://doi.org/10.1007/s10554-014-0370-7 .
doi: 10.1007/s10554-014-0370-7
pubmed: 24458953
pmcid: 4112486
Stiekema LCA, Stroes ESG, Verweij SL, et al. Persistent arterial wall inflammation in patients with elevated lipoprotein(a) despite strong low-density lipoprotein cholesterol reduction by proprotein convertase subtilisin/kexin type 9 antibody treatment. Eur Heart J. 2019;40(33):2775-81. https://doi.org/10.1093/eurheartj/ehy862 .
doi: 10.1093/eurheartj/ehy862
pubmed: 30561610
Bland M. An Introduction To Medical Statistics. Third: Oxford University Press; 2000.
Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149-60. https://doi.org/10.3758/BRM.41.4.1149 .
doi: 10.3758/BRM.41.4.1149
pubmed: 19897823
Pawade TA, Cartlidge TRG, Jenkins WSA, et al. Optimization and reproducibility of aortic valve 18F-fluoride positron emission tomography in patients with aortic stenosis. Circ Cardiovasc Imaging. 2016. https://doi.org/10.1161/CIRCIMAGING.116.005131 .
doi: 10.1161/CIRCIMAGING.116.005131
pubmed: 27733431
pmcid: 5068186
Eldib M, Bini J, Lairez O, et al. Feasibility of (18)F-Fluorodeoxyglucose radiotracer dose reduction in simultaneous carotid PET/MR imaging. Am J Nucl Med Mol Imaging. 2015;5(4):401-7.
pubmed: 26269777
pmcid: 4529593
Eldib M, Bini J, Calcagno C, Robson PM, Mani V, Fayad ZA. Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging. Invest Radiol. 2014;49(2):63-9. https://doi.org/10.1097/RLI.0b013e3182a530f8 .
doi: 10.1097/RLI.0b013e3182a530f8
pubmed: 24056110
pmcid: 4011564
Deller TW, Mathew NK, Hurley SA, Bobb CM, McMillan AB. PET image quality improvement for simultaneous PET/MRI with a lightweight MRI surface coil. Radiology. 2020;298(1):166-72. https://doi.org/10.1148/radiol.2020200967 .
doi: 10.1148/radiol.2020200967
pubmed: 33141004