Scan-rescan measurement repeatability of


Journal

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
ISSN: 1532-6551
Titre abrégé: J Nucl Cardiol
Pays: United States
ID NLM: 9423534

Informations de publication

Date de publication:
08 2022
Historique:
received: 24 08 2020
accepted: 07 03 2021
pubmed: 29 5 2021
medline: 5 8 2022
entrez: 28 5 2021
Statut: ppublish

Résumé

Non-invasive positron emission tomography (PET) of vascular inflammation and atherosclerotic plaque by identifying increased uptake of

Identifiants

pubmed: 34046803
doi: 10.1007/s12350-021-02627-5
pii: 10.1007/s12350-021-02627-5
doi:

Substances chimiques

Radiopharmaceuticals 0
Fluorodeoxyglucose F18 0Z5B2CJX4D

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1660-1670

Subventions

Organisme : British Heart Foundation
ID : FS/13/77/30488
Pays : United Kingdom
Organisme : British Heart Foundation
ID : FS/14/78/31020
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL071021
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. American Society of Nuclear Cardiology.

Références

Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282-92. https://doi.org/10.1161/ATVBAHA.108.179739 .
doi: 10.1161/ATVBAHA.108.179739 pubmed: 20554950
Rudd JHF, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708-11.
doi: 10.1161/01.CIR.0000020548.60110.76
Davies JR, Rudd JHF, Fryer TD, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke. 2005;36(12):2642-7. https://doi.org/10.1161/01.STR.0000190896.67743.b1 .
doi: 10.1161/01.STR.0000190896.67743.b1 pubmed: 16282536
Dunphy MPS, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med Off Publ Soc Nucl Med. 2005;46(8):1278-84.
Tawakol A, Migrino RQ, Bashian GG, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48(9):1818-24. https://doi.org/10.1016/j.jacc.2006.05.076 .
doi: 10.1016/j.jacc.2006.05.076 pubmed: 17084256
Niccoli Asabella A, Ciccone MM, Cortese F, et al. Higher reliability of 18F-FDG target background ratio compared to standardized uptake value in vulnerable carotid plaque detection: a pilot study. Ann Nucl Med. 2014;28(6):571-9. https://doi.org/10.1007/s12149-014-0850-9 .
doi: 10.1007/s12149-014-0850-9 pubmed: 24737136
Ogawa M, Magata Y, Kato T, et al. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med Off Publ Soc Nucl Med. 2006;47(11):1845-50.
Tahara N, Kai H, Ishibashi M, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48(9):1825-31. https://doi.org/10.1016/j.jacc.2006.03.069 .
doi: 10.1016/j.jacc.2006.03.069 pubmed: 17084257
Rudd JHF, Myers KS, Bansilal S, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50(9):892-6. https://doi.org/10.1016/j.jacc.2007.05.024 .
doi: 10.1016/j.jacc.2007.05.024 pubmed: 17719477
Rudd JHF, Myers KS, Bansilal S, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med Off Publ Soc Nucl Med. 2008;49(6):871-8. https://doi.org/10.2967/jnumed.107.050294 .
doi: 10.2967/jnumed.107.050294
Izquierdo-Garcia D, Davies JR, Graves MJ, et al. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods. Stroke. 2009;40(1):86-93. https://doi.org/10.1161/STROKEAHA.108.521393 .
doi: 10.1161/STROKEAHA.108.521393 pubmed: 18927453
van der Valk FM, Verweij SL, Zwinderman KAH, et al. Thresholds for arterial wall inflammation quantified by (18)F-FDG PET imaging: implications for vascular interventional studies. JACC Cardiovasc Imaging. 2016;9(10):1198-207. https://doi.org/10.1016/j.jcmg.2016.04.007 .
doi: 10.1016/j.jcmg.2016.04.007 pubmed: 27639759 pmcid: 5056585
Mizoguchi M, Tahara N, Tahara A, et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging. 2011;4(10):1110-8. https://doi.org/10.1016/j.jcmg.2011.08.007 .
doi: 10.1016/j.jcmg.2011.08.007 pubmed: 21999871
Duivenvoorden R, Mani V, Woodward M, et al. Relationship of serum inflammatory biomarkers with plaque inflammation assessed by FDG PET/CT: the dal-PLAQUE study. JACC Cardiovasc Imaging. 2013;6(10):1087-94. https://doi.org/10.1016/j.jcmg.2013.03.009 .
doi: 10.1016/j.jcmg.2013.03.009 pubmed: 24135322
Tawakol A, Fayad ZA, Mogg R, et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol. 2013;62(10):909-17. https://doi.org/10.1016/j.jacc.2013.04.066 .
doi: 10.1016/j.jacc.2013.04.066 pubmed: 23727083
Emami H, Vucic E, Subramanian S, et al. The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial. Atherosclerosis. 2015;240(2):490-6. https://doi.org/10.1016/j.atherosclerosis.2015.03.039 .
doi: 10.1016/j.atherosclerosis.2015.03.039 pubmed: 25913664
Joseph P, Ishai A, Mani V, et al. Short-term changes in arterial inflammation predict long-term changes in atherosclerosis progression. Eur J Nucl Med Mol Imaging. 2017;44(1):141-50. https://doi.org/10.1007/s00259-016-3524-0 .
doi: 10.1007/s00259-016-3524-0 pubmed: 27738728
Figueroa AL, Abdelbaky A, Truong QA, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6(12):1250-9. https://doi.org/10.1016/j.jcmg.2013.08.006 .
doi: 10.1016/j.jcmg.2013.08.006 pubmed: 24269261
Rominger A, Saam T, Wolpers S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med Off Publ Soc Nucl Med. 2009;50(10):1611-20. https://doi.org/10.2967/jnumed.109.065151 .
doi: 10.2967/jnumed.109.065151
Vesey AT, Dweck MR, Fayad ZA. Utility of combining PET and MR imaging of carotid plaque. Neuroimaging Clin N Am. 2016;26(1):55-68. https://doi.org/10.1016/j.nic.2015.09.005 .
doi: 10.1016/j.nic.2015.09.005 pubmed: 26610660
Makowski MR, Botnar RM. MR imaging of the arterial vessel wall: molecular imaging from bench to bedside. Radiology. 2013;269(1):34-51. https://doi.org/10.1148/radiol.13102336 .
doi: 10.1148/radiol.13102336 pubmed: 24062561
Brinjikji W, Huston J, Rabinstein AA, Kim G-M, Lerman A, Lanzino G. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg. 2016;124(1):27-42. https://doi.org/10.3171/2015.1.JNS142452 .
doi: 10.3171/2015.1.JNS142452 pubmed: 26230478
Wasserman BA. Advanced contrast-enhanced MRI for looking beyond the lumen to predict stroke: building a risk profile for carotid plaque. Stroke. 2010;41(10 Suppl):S12-6. https://doi.org/10.1161/STROKEAHA.110.596288 .
doi: 10.1161/STROKEAHA.110.596288 pubmed: 20876485
van Hoof RHM, Heeneman S, Wildberger JE, Kooi ME. Dynamic contrast-enhanced MRI to study atherosclerotic plaque microvasculature. Curr Atheroscler Rep. 2016;18(6):33. https://doi.org/10.1007/s11883-016-0583-4 .
doi: 10.1007/s11883-016-0583-4 pubmed: 27115144 pmcid: 4846686
Saba L, Saam T, Jäger HR, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurol. 2019;18(6):559-72. https://doi.org/10.1016/S1474-4422(19)30035-3 .
doi: 10.1016/S1474-4422(19)30035-3 pubmed: 30954372
Hyafil F, Schindler A, Sepp D, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging. 2016;43(2):270-9. https://doi.org/10.1007/s00259-015-3201-8 .
doi: 10.1007/s00259-015-3201-8 pubmed: 26433367
Silvera SS, Aidi HE, Rudd JHF, et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis. 2009;207(1):139-43. https://doi.org/10.1016/j.atherosclerosis.2009.04.023 .
doi: 10.1016/j.atherosclerosis.2009.04.023 pubmed: 19467659 pmcid: 3436906
Saito H, Kuroda S, Hirata K, et al. Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc Dis Basel Switz. 2013;35(4):370-7. https://doi.org/10.1159/000348846 .
doi: 10.1159/000348846
Calcagno C, Ramachandran S, Izquierdo-Garcia D, et al. The complementary roles of dynamic contrast-enhanced MRI and 18F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis. Eur J Nucl Med Mol Imaging. 2013;40(12):1884-93. https://doi.org/10.1007/s00259-013-2518-4 .
doi: 10.1007/s00259-013-2518-4 pubmed: 23942908
Catana C. Principles of simultaneous PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):231-43. https://doi.org/10.1016/j.mric.2017.01.002 .
doi: 10.1016/j.mric.2017.01.002 pubmed: 28390525 pmcid: 5385858
Karakatsanis NA, Abgral R, Trivieri MG, et al. Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01928-0 .
doi: 10.1007/s12350-019-01928-0
Robson PM, Vergani V, Benkert T, et al. Assessing the qualitative and quantitative impacts of simple two-class vs multiple tissue-class MR-based attenuation correction for cardiac PET/MR. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-019-02002-5 .
doi: 10.1007/s12350-019-02002-5
Ungar B, Pavel A, Robson P, et al. A preliminary 18F-FDG-PET/MRI study shows increased vascular inflammation in moderate-to-severe atopic dermatitis. J Allergy Clin Immunol Pract. 2020;8:3500.
doi: 10.1016/j.jaip.2020.07.018
Robson PM, Dweck MR, Trivieri MG, et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc Imaging. 2017. https://doi.org/10.1016/j.jcmg.2016.09.029 .
doi: 10.1016/j.jcmg.2016.09.029 pubmed: 28982570 pmcid: 6415529
Mani V, Woodward M, Samber D, et al. Predictors of change in carotid atherosclerotic plaque inflammation and burden as measured by 18-FDG-PET and MRI, respectively, in the dal-PLAQUE study. Int J Cardiovasc Imaging. 2014;30(3):571-82. https://doi.org/10.1007/s10554-014-0370-7 .
doi: 10.1007/s10554-014-0370-7 pubmed: 24458953 pmcid: 4112486
Stiekema LCA, Stroes ESG, Verweij SL, et al. Persistent arterial wall inflammation in patients with elevated lipoprotein(a) despite strong low-density lipoprotein cholesterol reduction by proprotein convertase subtilisin/kexin type 9 antibody treatment. Eur Heart J. 2019;40(33):2775-81. https://doi.org/10.1093/eurheartj/ehy862 .
doi: 10.1093/eurheartj/ehy862 pubmed: 30561610
Bland M. An Introduction To Medical Statistics. Third: Oxford University Press; 2000.
Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149-60. https://doi.org/10.3758/BRM.41.4.1149 .
doi: 10.3758/BRM.41.4.1149 pubmed: 19897823
Pawade TA, Cartlidge TRG, Jenkins WSA, et al. Optimization and reproducibility of aortic valve 18F-fluoride positron emission tomography in patients with aortic stenosis. Circ Cardiovasc Imaging. 2016. https://doi.org/10.1161/CIRCIMAGING.116.005131 .
doi: 10.1161/CIRCIMAGING.116.005131 pubmed: 27733431 pmcid: 5068186
Eldib M, Bini J, Lairez O, et al. Feasibility of (18)F-Fluorodeoxyglucose radiotracer dose reduction in simultaneous carotid PET/MR imaging. Am J Nucl Med Mol Imaging. 2015;5(4):401-7.
pubmed: 26269777 pmcid: 4529593
Eldib M, Bini J, Calcagno C, Robson PM, Mani V, Fayad ZA. Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging. Invest Radiol. 2014;49(2):63-9. https://doi.org/10.1097/RLI.0b013e3182a530f8 .
doi: 10.1097/RLI.0b013e3182a530f8 pubmed: 24056110 pmcid: 4011564
Deller TW, Mathew NK, Hurley SA, Bobb CM, McMillan AB. PET image quality improvement for simultaneous PET/MRI with a lightweight MRI surface coil. Radiology. 2020;298(1):166-72. https://doi.org/10.1148/radiol.2020200967 .
doi: 10.1148/radiol.2020200967 pubmed: 33141004

Auteurs

Philip M Robson (PM)

BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. pmrobson98@gmail.com.

Audrey Kaufman (A)

BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Alison Pruzan (A)

BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Marc R Dweck (MR)

British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SB, UK.

Maria-Giovanna Trivieri (MG)

BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Ronan Abgral (R)

Department of Nuclear Medicine, European University of Brittany, EA3878 GETBO, IFR 148, CHRU Brest, Brest, France.

Nicolas A Karakatsanis (NA)

BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Patrick M Brunner (PM)

Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA.

Emma Guttman (E)

Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Zahi A Fayad (ZA)

BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Venkatesh Mani (V)

BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH