Relationships between soil pollution by heavy metals and melanin-dependent coloration of a fossorial amphisbaenian reptile.


Journal

Integrative zoology
ISSN: 1749-4877
Titre abrégé: Integr Zool
Pays: Australia
ID NLM: 101492420

Informations de publication

Date de publication:
Jul 2022
Historique:
pubmed: 29 5 2021
medline: 14 7 2022
entrez: 28 5 2021
Statut: ppublish

Résumé

Melanin is the basis of coloration in many animals, and although it is often used in communication, thermoregulation, or camouflage, melanin has many other physiological functions. For example, in polluted habitats, melanin can have a detoxifying function. Melanic coloration would help to sequester in the skin the heavy metal contaminants from inside the body, which will be expelled to the exterior when the skin is sloughed. Moreover, animals should have evolved more melanic colorations in more polluted habitats ("industrial melanism" hypothesis). We examined whether the fossorial amphisbaenian reptile, Trogonophis wiegmanni, is able to eliminate heavy metals, derived from soil pollution by seagull depositions, through sloughing its skin. Our results suggest a covariation between levels of soil pollution by heavy metals and the concentration of heavy metals in the sloughed skins of amphisbaenians. This suggests that amphisbaenians may expel heavy metals from their bodies when they slough the skins. We also tested whether amphisbaenians inhabiting soils with higher levels of heavy metal pollution had darker (melanin-dependent) body colorations. However, contrary to predictions from the "industrial melanization" hypothesis, we found a negative relationship between soil pollution and proportions of melanic coloration. This contradictory result could, however, be explained because heavy metals have endocrine disruption effects that increase physiological stress, and higher stress levels could result in decreased melanogenesis. We suggest that although amphisbaenians might have some detoxifying mechanism linked to melanin in the skin, this process might be negatively affected by stress and result ineffective under conditions of high soil pollution.

Identifiants

pubmed: 34047065
doi: 10.1111/1749-4877.12562
doi:

Substances chimiques

Melanins 0
Metals, Heavy 0
Soil 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

596-607

Informations de copyright

© 2021 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

Références

Andrade DV, Nascimento LB, Abe AS (2006). Habits hidden underground: A review on the reproduction of the Amphisbaenia with notes on four neotropical species. Amphibia-Reptilia 27, 207-17.
Baeckens S, García-Roa R, Martín J et al. (2017). Fossorial and durophagous: Implications of molluscivory for head size and bite capacity in a burrowing worm lizard. Journal of Zoology 301, 193-205.
Bin BH, Bhin J, Yang SH et al. (2014). Hyperosmotic stress reduces melanin production by altering melanosome formation. PLoS ONE 9, e105965.
Blais JM, Kimpe LE, McMahon D et al. (2005). Marine arctic seabirds transport marine-derived contaminants. Science 309, 445.
Böhm M, Collen B, Baillie JEM et al. (2013). The conservation status of the world's reptiles. Biological Conservation 157, 372-85.
Bons J, Geniez P (1996). Amphibians and Reptiles of Morocco. Asociación Herpetológica Española, Barcelona.
Bridelli M, Crippa P (2008). Theoretical analysis of the adsorption of metal ions to the surface of melanin particles. Adsorption 14, 101-9.
Bury S, Tomasz D. Mazgajski TD et al. (2020). Melanism, body size, and sex ratio in snakes-new data on the grass snake (Natrix natrix) and synthesis. Naturwissenschaften 107, 22.
Campbell KR, Campbell TS (2001). The accumulation and effects of environmental contaminants on snakes: A review. Environmental Monitoring and Assessment 70, 253-301.
Campbell KR, Campbell TS, Burger J (2005). Heavy metal concentrations in northern water snakes (Nerodia sipedon) from East Fork Poplar Creek and the Little River, East Tennessee, USA. Archives of Environmental Contamination and Toxicology 49, 239-48.
Chatelain M, Gasparini J, Jacquin L, Frantz A (2014). The adaptive function of melanin-based plumage coloration to trace metals. Biology Letters 10, 20140164.
Chatelain M, Pessato A, Frantz A et al. (2017). Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. Oikos 136, 1542-53.
Civantos E, Martín J, López P (2003). Fossorial life constrains microhabitat selection of the amphisbaenian Trogonophis wiegmanni. Canadian Journal of Zoology 81, 1839-44.
Clusella-Trullas S, van Wyk JH, Spotila JR (2009). Thermal benefits of melanism in cordylid lizards: A theoretical and field test. Ecology 90, 2297-312.
Colli GR, Zamboni DS (1999). Ecology of the worm lizard Amphisbaena alba in the cerrado of central Brazil. Copeia 1999, 733-42.
Cox M, Preda M (2003). Trace metal distribution and relation to marine sediment mineralogy, Gulf of Carpentaria, Northern Australia. Marine Pollution Bulletin 46, 1615-29.
Dauwe T, Eens M (2008). Melanin- and carotenoid-dependent signals of great tits (Parus major) relate differently to metal pollution. Naturwissenschaften 95, 969-73.
Doya R, Nakayama SMM, Nakata H et al. (2020). Land use in habitats affects metal concentrations in wild lizards around a former lead mining site. Environmental Science & Technology 54, 22.
Duarte A, Cachada A, Rocha-Santos T (2017). Soil Pollution. From Monitoring to Remediation. Academic Press, California.
Gans C (1974). Biomechanics: An Approach to Vertebrate Biology. Lippincot, Philadelphia.
Gans C (1978). The characteristics and affinities of the amphisbaenia. Transactions of the Zoological Society of London 34, 347-416.
Gans C (2005). Checklist and bibliography of the amphisbaenia of the world. Bulletin of the American Museum of Natural History 280, 1-130
García LV (2005). Suelos de las Islas Chafarinas y sus relaciones ecológicas. Ecosistemas 14, 135-9.
García LV, Marañón T, Clemente L (2002a). Animal influences on soil properties and plant cover in the Chafarinas Islands (NW Africa). In: Rubio JL, Morgan RPC, Asins S, eds. Man and Soil at the Third Millennium. Vol. 1. Geoforma, Logroño, Spain, pp. 705-12.
García LV, Marañón T, Ojeda F et al. (2002b). Seagull influence on soil properties, chenopod shrub distribution, and leaf nutrient status in semi-arid Mediterranean islands. Oikos 98, 75-86.
García LV, Clemente L, Gutiérrez E, Jordán A (2007). Factores condicionantes de la diversidad edáfica en las islas Chafarinas. In: Bellinfante N, Jordán A, eds. Tendencias Actuales de la Ciencia del Suelo. Universidad de Sevilla, Sevilla, Spain, pp. 828-33.
García-Roa R, Martín J (2016). Xantismo en la culebrilla mora (Trogonophis wiegmanni) en las Islas Chafarinas. Boletín de la Asociación Herpetológica Española 27, 12-4.
García-Roa R, Ortega J, López P et al. (2014). Revisión de la distribución y abundancia de la herpetofauna en las Islas Chafarinas: datos históricos vs. tendencias poblacionales. Boletín de la Asociación Herpetológica Española 25, 55-62.
Giesy JP, Feyk LA, Jones PD, Kannan K, Sanderson T (2003). Review of the effects of endocrine-disrupting chemicals in birds. Pure and Applied Chemistry 75, 2287-303.
Gochfeld M, Saliva J, Lesser F, Shukla T, Bertrand D, Burger J (1991). Effects of color on cadmium and lead levels in avian contour feathers. Archives of Environmental Contamination and Toxicology 20, 523-6.
Goiran C, Bustamante P, Shine R (2017). Industrial melanism in the seasnake Emydocephalus annulatus. Current Biology 27, 2510-3.
Grillitsch B, Schiesari L (2010). The ecotoxicology of metals in reptiles. In: Sparling DW, Linder G, Bishop CA, Krest SK, eds. Ecotoxicology of Amphibians and Reptiles. CRC Press, Florida, pp. 337-448.
Headley AD (1996). Heavy metal concentrations in peat profiles from the high Arctic. Science of the Total Environment 177, 105-11
Henderson RW, Powell R, Martín J, López P (2016). Sampling techniques for arboreal and fossorial reptiles. In: Dodd CK Jr, ed. Reptile Ecology and Conservation. A Handbook of Techniques. Oxford University Press, Oxford, pp. 139-53.
Hopkins WA, Roe JH, Snodgrass JW et al. (2001). Nondestructive indices of trace element exposure in squamate reptiles. Environmental Pollution 115, 1-7.
How RA, Shine R (1999). Ecological traits and conservation biology of five fossorial ‘sand-swimming' snake species (Simoselaps: Elapidae) in south-western Australia. Journal of Zoology 249, 269-82.
Jones DE, Holladay SD (2006). Excretion of three heavy metals in the shed skin of exposed corn snakes (Elaphe guttata). Ecotoxicology and Environmental Safety 64, 221-5.
Larramendy M (2016). Soil Contamination. Current Consequences and Further Solutions. IntechOpen, London.
Lin JY, Fisher DE (2007). Melanocyte biology and skin pigmentation. Nature 445, 843-50.
Liu Y, Hong L, Kempf V et al. (2004). Ion-exchange and adsorption of Fe(III) by Sepia melanin. Pigment Cell & Melanoma Research 17, 262-9.
Loumbourdis NS (1997). Heavy metal contamination in a lizard, Agama stellio stellio, compared in urban, high altitude and agricultural, low altitude areas of north Greece. Bulletin of Environmental Contamination and Toxicology 58, 945-52.
Manjula M, Mohanraj R, Devi MP (2015). Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environmental Monitoring and Assessment 187, 1-10.
Márquez-Ferrando R, Santos X, Pleguezuelos JM, Ontiveros D (2009). Bioaccumulation of heavy metals in the lizard Psammodromus algirus after a tailing-dam collapse in Aznalcollar (Southwest Spain). Archives of Environmental Contamination and Toxicology 56, 276-85.
Markus J, McBratney AB (2000). A review of the contamination of soil with lead. I. Origin, occurrence and chemical form of soil lead. Progress in Environmental Science 24, 291-318.
Martín J, López P, Salvador A (1991). Microhabitat selection of the amphisbaenian Blanus cinereus. Copeia 1991, 1142-6.
Martín J, Polo-Cavia N, Gonzalo A et al. (2011a). Distribución, abundancia y conservación de la culebrilla mora (Trogonophis wiegmanni) en las Islas Chafarinas. Boletín de la Asociación Herpetológica Española 22, 107-12.
Martín J, Polo-Cavia N, Gonzalo A et al. (2011b). Structure of a population of the amphisbaenian Trogonophis wiegmanni in North Africa. Herpetologica 67, 250-7.
Martín J, López P, García LV (2013a). Soil characteristics determine microhabitat selection of the fossorial amphisbaenian Trogonophis wiegmanni. Journal of Zoology 290, 265-72.
Martín J, Ortega J, López P et al. (2013b). Fossorial life does not constrain diet selection in the amphisbaenian Trogonophis wiegmanni. Journal of Zoology 291, 226-33.
Martín J, López P, Gutiérrez E, García LV (2015). Natural and anthropogenic alterations of the soil affect body condition of the fossorial amphisbaenian Trogonophis wiegmanni in North Africa. Journal of Arid Environments 122, 30-6.
Martín J, Gutiérrez E, García LV (2017). Alteration effects of ornamental whitewashing of rocks on the soil properties and body condition of fossorial amphisbaenians that live under them. Herpetological Conservation and Biology 12, 367-72.
Martín J, Ortega J, García-Roa R et al. (2021). Going underground: Short- and long-term movements may reveal the fossorial spatial ecology of an amphisbaenian. Movement Ecology 9, 14.
McGraw KJ (2008). An update of the honesty of melanin based color signals in birds. Pigment Cell and Melanoma Research 21, 133-8.
Measey GJ (2006). Surveying biodiversity of soil herpetofauna: Towards a standard quantitative methodology. European Journal of Soil Biology 42, S103-10.
Measey GJ, Armstrong AJ, Hanekom C (2009). Subterranean herpetofauna show a decline after 34 years in Ndumu Game Reserve, South Africa. Oryx 43, 284-7.
Meillère A, Brischoux F, Bustamante P et al. (2016). Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Science of the Total Environment 566-7, 93-101.
Nasri I, Hammouda A, Hamza1 F et al. (2017). Heavy metal accumulation in lizards living near a phosphate treatment plant: Possible transfer of contaminants from aquatic to terrestrial food webs. Environmental Science and Pollution Research 24, 12009-14.
Navas CA, Antoniazzi MM, Carvalho JE et al. (2004). Morphological and physiological specialization for digging in amphisbaenians, an ancient lineage of fossorial vertebrates. Journal of Experimental Biology 207, 2433-41.
Niecke M, Heid M, Krüger A (1999). Correlations between melanin pigmentation and element concentration in feathers of white-tailed eagles (Haliaeetus albicilla). Journal of Ornithology 140, 355-62.
Niecke M, Rothlaender S, Roulin A (2003). Why do melanin ornaments signal individual quality? Insights from metal element analysis of barn owl feathers. Oecologia 137, 153-8.
Orłowski G, Kamiński P, Karg J et al. (2015). Variable contribution of functional prey groups in diets reveals inter-and intraspecific differences in faecal concentrations of essential and non-essential elements in three sympatric avian aerial insectivores: a re-assessment of usefulness of bird faeces in metal biomonitoring. Science of the Total Environment 518, 407-16.
Osman KT (2013). Soil Degradation, Conservation and Remediation. Springer, Netherlands.
Otero XL (1998). Effects of nesting yellow-legged gulls (Larus cachinnans Pallas) on the heavy-metal content of soils in the Cies Islands (Galicia, north-west Spain). Marine Pollution Bulletin 36, 267-72.
Ottinger MA, Quinn MJ, Lavoie E et al. (2005). Consequences of endocrine disrupting chemicals on reproductive endocrine function in birds: Establishing reliable end points of exposure. Domestic Animals Endocrinology 29, 411-9.
Pang S, Wu H, Wang Q et al. (2014). Chronic stress suppresses the expression of cutaneous hypothalamic-pituitary-adrenocortical axis elements and melanogenesis. PLoS ONE 9, e98283.
Papenfuss TJ (1982). The ecology and systematics of the amphisbaenian genus Bipes. Occasional Papers of the Califonian Academy of Sciences 136, 1-42.
Recio P, Rodríguez-Ruiz G, Ortega J, Martín J (2019). PIT-Tags as a technique for marking fossorial reptiles: insights from a long-term field study of the amphisbaenian Trogonophis wiegmanni. Acta Herpetologica 14, 101-7.
Roulin A, Almasi B, Rossi-Pedruzzi A et al. (2008). Corticosterone mediates the condition-dependent component of melanin-based coloration. Animal Behaviour 75, 1351-8.
San-Jose LM, Fitze PS (2013). Corticosterone regulates multiple colour traits in Lacerta [Zootoca] vivipara males. Journal of Evolutionary Biology 26, 2681-90.
Solano F (2014). Melanins: skin pigments and much more - types, structural models, biological functions, and formation routes. New Journal of Science 2014, 498276.
Sparks DL (1996). Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, MK.
Tibbett M, Fraser TD, Duddigan S (2020). Identifying potential threats to soil biodiversity. PeerJ 8, e9271.
Vroonen J, Vervust B, Van Damme R (2013). Melanin based colouration as a potential indicator of male quality in the lizard Zootoca vivipara (Squamata: Lacertidae). Amphibia-Reptilia 34, 539-49.
Walker CH, Sibly RM, Hopkin SP, Peakall DB (2012). Principles of Ecotoxicology, 4th edn. CRC Press, Florida.
Webb JK, Shine R, Branch WR, Harlow PS (2000). Life underground: food habits and reproductive biology of two amphisbaenian species from South Africa. Journal of Herpetology 34, 510-6.
Zduniak P, Surmacki A, Erciyas-Yavuz K et al. (2014). Are there different requirements for trace elements in eumelanin- and pheomelanin-based color production? A case study of two passerine species. Comparative Biochemistry and Physiology A 175, 96-101.
Zhang B, Ma S, Rachmin I et al. (2020). Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577, 676-81.

Auteurs

José Martín (J)

Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.

Pablo Recio (P)

Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.

Gonzalo Rodríguez-Ruiz (G)

Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.

Isabel Barja (I)

Departamento de Zoología, Facultad de Biología, Universidad Autónoma de Madrid, Madrid, Spain.
Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.

Eduardo Gutiérrez (E)

Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Sevilla, Spain.

Luis V García (LV)

Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Sevilla, Spain.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH