Cytoplasmic incompatibility between Old and New World populations of a tramp ant.
Wolbachia
antibiotics
endosymbiont
reproductive isolation
social insects
Journal
Evolution; international journal of organic evolution
ISSN: 1558-5646
Titre abrégé: Evolution
Pays: United States
ID NLM: 0373224
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
revised:
14
04
2021
received:
21
06
2020
accepted:
16
04
2021
pubmed:
29
5
2021
medline:
15
12
2021
entrez:
28
5
2021
Statut:
ppublish
Résumé
Reproductive manipulation by endosymbiotic Wolbachia can cause unequal inheritance, allowing the manipulator to spread and potentially impacting evolutionary dynamics in infected hosts. Tramp and invasive species are excellent models to study the dynamics of host-Wolbachia associations because introduced populations often diverge in their microbiomes after colonizing new habitats, resulting in infection polymorphisms between native and introduced populations. Ants are the most abundant group of insects on earth, and numerous ant species are classified as highly invasive. However, little is known about the role of Wolbachia in these ecologically dominant insects. Here, we provide the first description of reproductive manipulation by Wolbachia in an ant. We show that Old and New World populations of the cosmotropic tramp ant Cardiocondyla obscurior harbor distinct Wolbachia strains, and that only the Old World strain manipulates host reproduction by causing cytoplasmic incompatibility (CI) in hybrid crosses. By uncovering a symbiont-induced mechanism of reproductive isolation in a social insect, our study provides a novel perspective on the biology of tramp ants and introduces a new system for studying the evolutionary consequences of CI.
Banques de données
Dryad
['10.5061/dryad.dr7sqv9z2']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1775-1791Informations de copyright
© 2021 The Authors. Evolution published by Wiley Periodicals LLC on behalf of The Society for the Study of Evolution.
Références
Ahmed, M. Z., J. W. Breinholt, and A. Y. Kawahara. 2016. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol. Biol. 16:118.
Andersen, S. B., M. Boyle, D. R. Nash, and J. J. Boomsma. 2012. Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: potential for a nutritional symbiosis. J. Evol. Biol. 25:1340-1350.
Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455-477.
Beckmann, J. F., J. A. Ronau, and M. Hochstrasser. 2017. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2:17007.
Beckmann, J. F., M. Bonneau, H. Chen, M. Hochstrasser, D. Poinsot, H. Merçot, M. Weill, M. Sicard, and S. Charlat. 2019a. Caution does not preclude predictive and testable models of cytoplasmic incompatibility: a reply to Shropshire et al. Trends Genet. 35:399-400.
Beckmann, J. F., M. Bonneau, H. Chen, M. Hochstrasser, D. Poinsot, H. Merçot, M. Weill, M. Sicard, and S. Charlat. 2019b. The toxin-antidote model of cytoplasmic incompatibility: genetics and evolutionary implications. Trends Genet. 35:175-185.
Bing, X.-L., D.-S. Zhao, J.-T. Sun, K.-J. Zhang, and X.-Y. Hong. 2020. Genomic analysis of Wolbachia from Laodelphax striatellus (Delphacidae, Hemiptera) reveals insights into its “Jekyll and Hyde” mode of infection pattern. Genome Biol. Evol. 12:3818-3831.
Bonneau, M., C. Atyame, M. Beji, F. Justy, M. Cohen-Gonsaud, M. Sicard, and M. Weill. 2018. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nat. Commun. 9:319.
Bordenstein, S. R., and J. H. Werren. 2007. Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia. Heredity 99:278-287.
Braig, H. R., W. Zhou, S. L. Dobson, and S. L. O'Neill. 1998. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180:2373-2378.
Branca, A., F. Vavre, J.-F. Silvain, and S. Dupas. 2009. Maintenance of adaptive differentiation by Wolbachia induced bidirectional cytoplasmic incompatibility: the importance of sib-mating and genetic systems. BMC Evol. Biol. 9:185.
Breeuwer, J. A., and J. H. Werren. 1993. Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics 135:565-574.
Brucker, R. M., and S. R. Bordenstein. 2012. Speciation by symbiosis. Trends Ecol. Evol. 27:443-451.
---. 2013. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341:667-669.
Campbell, E. A., N. Korzheva, A. Mustaev, K. Murakami, S. Nair, A. Goldfarb, and S. A. Darst. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901-912.
Chen, F., A. J. Mackey, J. K. Vermunt, and D. S. Roos. 2007. Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS ONE 2:e383.
Chen, H., J. A. Ronau, J. F. Beckmann, and M. Hochstrasser. 2019. A Wolbachia nuclease and its binding partner provide a distinct mechanism for cytoplasmic incompatibility. Proc. Natl. Acad. Sci. USA 116:22314-22321.
Cheng, D., S. Chen, Y. Huang, N. E. Pierce, M. Riegler, F. Yang, L. Zeng, Y. Lu, G. Liang, and Y. Xu. 2019. Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathog. 15:e1007942.
Clark, M. E., C. Bailey-Jourdain, P. M. Ferree, S. J. England, W. Sullivan, D. M. Windsor, and J. H. Werren. 2008. Wolbachia modification of sperm does not always require residence within developing sperm. Heredity 101:420-428.
Cooper, B. S., P. S. Ginsberg, M. Turelli, and D. R. Matute. 2017. Wolbachia in the Drosophila yakuba complex: pervasive frequency variation and weak cytoplasmic incompatibility, but no apparent effect on reproductive isolation. Genetics 205:333-351.
Egas, M., F. Vala, and J. A. J. H. Breeuwer. 2002. On the evolution of cytoplasmic incompatibility in haplodiploid species. Evolution 56:1101-1109.
Engelstädter, J., and A. Telschow. 2009. Cytoplasmic incompatibility and host population structure. Heredity 103:196-207.
Foucaud, J., J. Orivel, A. Loiseau, J. H. C. Delabie, H. Jourdan, D. Konghouleux, M. Vonshak, M. Tindo, J.-L. Mercier, D. Fresneau, et al. 2010. Worldwide invasion by the little fire ant: routes of introduction and eco-evolutionary pathways. Evol. Appl. 3:363-374.
Fry, A. J., M. R. Palmer, and D. M. Rand. 2004. Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 93:379-389.
Goryacheva, I., A. Blekhman, B. Andrianov, and I. Zakharov. 2016. Heritable bacterial endosymbionts in native and invasive populations of Harmonia axyridis. Biol. Invasions 19:493-502.
Gotzek, D., H. J. Axen, A. V. Suarez, S. Helms Cahan, and D. Shoemaker. 2015. Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Mol. Ecol. 24:374-388.
Heddi, A., A. M. Grenier, C. Khatchadourian, H. Charles, and P. Nardon. 1999. Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proc. Natl. Acad. Sci. 96:6814-6819.
Heinze, J. 2017. Life-history evolution in ants: the case of Cardiocondyla. Proc. Biol. Sci. 284:20161406.
Heinze, J., and B. Hölldobler. 1993. Fighting for a harem of queens: physiology of reproduction in Cardiocondyla male ants. Proc. Natl. Acad. Sci. 90:8412-8414.
Heinze, J., S. Cremer, N. Eckl, and A. Schrempf. 2006. Stealthy invaders: the biology of Cardiocondyla tramp ants. Insect. Soc. 53:1-7.
Hoffmann, A. A., D. Clancy, and J. Duncan. 1996. Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity 76:1-8.
Hosokawa, T., R. Koga, Y. Kikuchi, X.-Y. Meng, and T. Fukatsu. 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 107:769-774.
Jaenike, J., K. A. Dyer, C. Cornish, and M. S. Minhas. 2006. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 4:e325.
Kautz, S., B. E. R. Rubin, and C. S. Moreau. 2013. Bacterial infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche 2013:936341.
Kelly, M., S. L. Price, M. de Oliveira Ramalho, and C. S. Moreau. 2019. Diversity of Wolbachia associated with the giant turtle ant, Cephalotes atratus. Curr. Microbiol. 76:1330-1337.
Klein, A. 2015. Endosymbiosis, co-option and recombination: mechanisms to generate evolutionary novelty in the ant Cardiocondyla obscurior. Doctoral diss., Universität Regensburg, Regensburg, Germany.
Klein, A., L. Schrader, R. Gil, A. Manzano-Marín, L. Flórez, D. Wheeler, J. H. Werren, A. Latorre, J. Heinze, M. Kaltenpoth, et al. 2015. A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME J. 10:376-388.
Kurtz, S., A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu, and S. L. Salzberg. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5:R12.
Langmead, B., and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359.
Lee, C.-C., C.-Y. Lin, S.-P. Tseng, K. Matsuura, and C.-C. S. Yang. 2020. Ongoing coevolution of Wolbachia and a widespread invasive ant, Anoplolepis gracilipes. Microorganisms 8:1569.
LePage, D. P., J. A. Metcalf, S. R. Bordenstein, J. On, J. I. Perlmutter, J. D. Shropshire, E. M. Layton, L. J. Funkhouser-Jones, J. F. Beckmann, and S. R. Bordenstein. 2017. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543:243-247.
Li, L. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13:2178-2189.
Lindsey, A. R. I., D. W. Rice, S. R. Bordenstein, A. W. Brooks, S. R. Bordenstein, and I. L. G. Newton. 2018. Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome Biol. Evol. 10:434-451.
Lis, A., A. Maryańska-Nadachowska, and Ł. Kajtoch. 2015. Relations of Wolbachia infection with phylogeography of Philaenus spumarius (Hemiptera: Aphrophoridae) populations within and beyond the Carpathian contact zone. Microb. Ecol. 70:509-521.
Martinez, J., L. Klasson, J. J. Welch, and F. M. Jiggins. 2021. Life and death of selfish genes: comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Mol. Biol. Evol. 38:2-15.
Moreira, L. A., I. Iturbe-Ormaetxe, J. A. Jeffery, G. Lu, A. T. Pyke, L. M. Hedges, B. C. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, et al. 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268-1278.
Morrow, J. L., A. A. G. Hall, and M. Riegler. 2017. Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. Microbiome 5:58.
Parker, E. S., I. L. G. Newton, and A. P. Moczek. 2020. (My microbiome) would walk 10,000 miles: maintenance and turnover of microbial communities in introduced dung beetles. Microb. Ecol. 80:435-446.
Perlmutter, J. I., S. R. Bordenstein, R. L. Unckless, D. P. LePage, J. A. Metcalf, T. Hill, J. Martinez, F. M. Jiggins, and S. R. Bordenstein. 2019. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog. 15:e1007936.
Perrot-Minnot, M. J., and J. H. Werren. 1999. Wolbachia infection and incompatibility dynamics in experimental selection lines. J. Evol. Biol. 12:272-282.
Perrot-Minnot, M. J., B. Cheval, A. Migeon, and M. Navajas. 2002. Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae. J. Evol. Biol. 15:808-817.
Pontieri, L., A. M. Schmidt, R. Singh, J. S. Pedersen, and T. A. Linksvayer. 2017. Artificial selection on ant female caste ratio uncovers a link between female-biased sex ratios and infection by Wolbachia endosymbionts. J. Evol. Biol. 30:225-234.
Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542.
Russell, J. A. 2012. The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts. Myrmecol. News 16:7-23.
Russell, J. A., B. Goldman-Huertas, C. S. Moreau, L. Baldo, J. K. Stahlhut, J. H. Werren, and N. E. Pierce. 2009. Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution 63:624-640.
Sanguin, H., A. Herrera, C. Oger-Desfeux, A. Dechesne, P. Simonet, E. Navarro, T. M. Vogel, Y. Moënne-Loccoz, X. Nesme, and G. L. Grundmann. 2006. Development and validation of a prototype 16S rRNA-based taxonomic microarray for Alphaproteobacteria. Environ. Microbiol. 8:289-307.
Schmidt, C. V., S. Frohschammer, A. Schrempf, and J. Heinze. 2013. Virgin ant queens mate with their own sons to avoid failure at colony foundation. Naturwissenschaften 101:69-72.
Schmittgen, T. D., and K. J. Livak. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3:1101-1108.
Schrader, L., J. W. Kim, D. Ence, A. Zimin, A. Klein, K. Wyschetzki, T. Weichselgartner, C. Kemena, J. Stökl, E. Schultner, et al. 2014. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 5:5495.
Schrader, L., D. F. Simola, J. Heinze, and J. Oettler. 2015. Sphingolipids, transcription factors, and conserved toolkit genes: developmental plasticity in the ant Cardiocondyla obscurior. Mol. Biol. Evol. 32:1474-1486.
Schrempf, A., and J. Heinze. 2006. Proximate mechanisms of male morph determination in the ant Cardiocondyla obscurior. Evol. Dev. 8:266-272.
Schrempf, A., E. Darrouzet, and J. Heinze. 2007. Mating success and potential male-worker conflict in a male-dimorphic ant. BMC Evol. Biol. 7:114.
Schrempf, A., K. von Wyschetzki, A. Klein, L. Schrader, J. Oettler, and J. Heinze. 2015. Mating with an allopatric male triggers immune response and decreases longevity of ant queens. Mol. Ecol. 24:3618-3627.
Schrempf, A., A. Moser, J. Delabie, and J. Heinze. 2016. Sperm traits differ between winged and wingless males of the ant Cardiocondyla obscurior. Integr. Zool. 11:427-432.
Schuler, H., C. Bertheau, S. P. Egan, J. L. Feder, M. Riegler, B. C. Schlick-Steiner, F. M. Steiner, J. Johannesen, P. Kern, K. Tuba, et al. 2013. Evidence for a recent horizontal transmission and spatial spread of Wolbachia from endemic Rhagoletis cerasi (Diptera: Tephritidae) to invasive Rhagoletis cingulata in Europe. Mol. Ecol. 22:4101-4111.
Schultner, E., and U. Pulliainen. 2020. Brood recognition and discrimination in ants. Insect. Soc. 67:11-34.
Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-2069.
Seifert, B., M. Ritz, and S. Csősz. 2013. Application of exploratory data analyses opens a new perspective in morphology-based alpha-taxonomy of eusocial organisms. Myrmecol. News 19:1-15.
Seifert, B., I. Okita, and J. Heinze. 2017. A taxonomic revision of the Cardiocondyla nuda group (Hymenoptera: Formicidae). Zootaxa 4290:324-356.
Shoemaker, D. D., V. Katju, and J. Jaenike. 1999. Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution 53:1157-1164.
Shropshire, J. D., and S. R. Bordenstein. 2019. Two-by-one model of cytoplasmic incompatibility: synthetic recapitulation by transgenic expression of cifA and cifB in Drosophila. PLoS Genet. 15:e1008221.
Shropshire, J. D., J. On, E. M. Layton, H. Zhou, and S. R. Bordenstein. 2018. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 115:4987-4991.
Shropshire, J. D., B. Leigh, S. R. Bordenstein, A. Duplouy, M. Riegler, J. C. Brownlie, and S. R. Bordenstein. 2019. Models and nomenclature for cytoplasmic incompatibility: caution over premature conclusions - a response to Beckmann et al. Trends Genet. 35:397-399.
Shropshire, J. D., B. Leigh, and S. R. Bordenstein. 2020. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 9:e61989.
Telschow, A., N. Yamamura, and J. H. Werren. 2005. Bidirectional cytoplasmic incompatibility and the stable coexistence of two Wolbachia strains in parapatric host populations. J. Theor. Biol. 235:265-274.
Telschow, A., M. Flor, Y. Kobayashi, P. Hammerstein, and J. H. Werren. 2007. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: mainland-island model. PLoS ONE 2:e701.
Tolley, S. J. A., P. Nonacs, and P. Sapountzis. 2019. Wolbachia horizontal transmission events in ants: what do we know and what can we learn? Front. Microbiol. 10:296.
Treanor, D., T. Pamminger, and W. O. H. Hughes. 2018. The evolution of caste-biasing symbionts in the social hymenoptera. Insect. Soc. 65:513-519.
Tseng, S.-P., J. K. Wetterer, A. V. Suarez, C.-Y. Lee, T. Yoshimura, D. Shoemaker, and C.-C. S. Yang. 2019. Genetic diversity and Wolbachia infection patterns in a globally distributed invasive ant. Front. Genet. 10:838.
Tsutsui, N. D., A. V. Suarez, D. A. Holway, and T. J. Case. 2000. Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. USA 97:5948-5953.
Vala, F., J. A. Breeuwer, and M. W. Sabelis. 2000. Wolbachia-induced “hybrid breakdown” in the two-spotted spider mite Tetranychus urticae Koch. Proc. R. Soc. Lond. B Biol. Sci. 267:1931-1937.
Vavre, F., F. Fleury, J. Varaldi, P. Fouillet, and M. Bouletreau. 2000. Evidence for female mortality in Wolbachia-mediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences. Evolution 54:191-200.
Veneti, Z., M. E. Clark, S. Zabalou, T. L. Karr, C. Savakis, and K. Bourtzis. 2003. Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164:545-552.
Versace, E., V. Nolte, R. V. Pandey, R. Tobler, and C. Schlötterer. 2014. Experimental evolution reveals habitat-specific fitness dynamics among Wolbachia clades in Drosophila melanogaster. Mol. Ecol. 23:802-814.
Wenseleers, T., L. Sundström, and J. Billen. 2002. Deleterious Wolbachia in the ant Formica truncorum. Proc. R. Soc. Lond. B Biol. Sci. 269:623-629.
Werren, J. H., L. Baldo, and M. E. Clark. 2008. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6:741-751.
Wick, R. R., M. B. Schultz, J. Zobel, and K. E. Holt. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350-3352.
Yen, J. H., and A. R. Barr. 1971. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657-658.
Zepeda-Paulo, F., S. Ortiz-Martínez, A. X. Silva, and B. Lavandero. 2018. Low bacterial community diversity in two introduced aphid pests revealed with 16S rRNA amplicon sequencing. PeerJ 6:e4725.
Zimmermann, L., A. Stephens, S.-Z. Nam, D. Rau, J. Kübler, M. Lozajic, F. Gabler, J. Söding, A. N. Lupas, and V. Alva. 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430:2237-2243.
Zug, R., and P. Hammerstein. 2012. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7:e38544.