Observation of Coherent Spin Waves in a Three-Dimensional Artificial Spin Ice Structure.
3D artificial spin ice structure
3D lithography
3D nanomagnetism
Brillouin light scattering
spin dynamics
spin waves
Journal
Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070
Informations de publication
Date de publication:
09 Jun 2021
09 Jun 2021
Historique:
pubmed:
29
5
2021
medline:
29
5
2021
entrez:
28
5
2021
Statut:
ppublish
Résumé
Harnessing high-frequency spin dynamics in three-dimensional (3D) nanostructures may lead to paradigm-shifting, next-generation devices including high density spintronics and neuromorphic systems. Despite remarkable progress in fabrication, the measurement and interpretation of spin dynamics in complex 3D structures remain exceptionally challenging. Here, we take a first step and measure coherent spin waves within a 3D artificial spin ice (ASI) structure using Brillouin light scattering. The 3D-ASI was fabricated by using a combination of two-photon lithography and thermal evaporation. Two spin-wave modes were observed in the experiment whose frequencies showed nearly monotonic variation with the applied field strength. Numerical simulations qualitatively reproduced the observed modes. The simulated mode profiles revealed the collective nature of the modes extending throughout the complex network of nanowires while showing spatial quantization with varying mode quantization numbers. The study shows a well-defined means to explore high-frequency spin dynamics in complex 3D spintronic and magnonic structures.
Identifiants
pubmed: 34048252
doi: 10.1021/acs.nanolett.1c00650
pmc: PMC8289297
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4629-4635Références
J Phys Condens Matter. 2014 Mar 26;26(12):123202
pubmed: 24599025
Phys Rev Lett. 2018 Nov 2;121(18):187201
pubmed: 30444399
ACS Nano. 2017 Sep 26;11(9):8814-8821
pubmed: 28783306
Opt Lett. 1997 Jan 15;22(2):132-4
pubmed: 18183126
Materials (Basel). 2020 Feb 07;13(3):
pubmed: 32046068
Science. 2008 Apr 11;320(5873):190-4
pubmed: 18403702
Nanoscale. 2015 Nov 21;7(43):18312-9
pubmed: 26488800
Nat Commun. 2021 May 28;12(1):3217
pubmed: 34050163
Phys Rev Lett. 2019 Nov 22;123(21):217201
pubmed: 31809154
Phys Rev Lett. 2015 Mar 20;114(11):115501
pubmed: 25839287
Phys Rev Lett. 2019 Aug 16;123(7):077201
pubmed: 31491129
J Phys Condens Matter. 2021 Mar 04;:
pubmed: 33662946
Opt Express. 2018 May 14;26(10):13436-13442
pubmed: 29801369
Nat Commun. 2017 Jun 09;8:15756
pubmed: 28598416
Nat Nanotechnol. 2020 May;15(5):356-360
pubmed: 32094498
Nanomaterials (Basel). 2020 Feb 28;10(3):
pubmed: 32121262
ACS Nano. 2017 Nov 28;11(11):11066-11073
pubmed: 29072836
Sci Adv. 2019 Feb 08;5(2):eaav6380
pubmed: 30783629
Nature. 2016 Dec 15;540(7633):410-413
pubmed: 27894124
Nat Commun. 2013;4:2702
pubmed: 24189978
ACS Nano. 2011 Dec 27;5(12):9559-65
pubmed: 22035409
ACS Appl Mater Interfaces. 2016 Jul 20;8(28):18339-46
pubmed: 27345034
Nature. 2017 Jul 26;547(7664):428-431
pubmed: 28748930
ACS Nano. 2018 Jun 26;12(6):5932-5939
pubmed: 29812903
Nanoscale. 2018 May 31;10(21):9981-9986
pubmed: 29770815
Nano Lett. 2006 Dec;6(12):2939-44
pubmed: 17163735