Moderating Role of TSHR and PTPN22 Gene Polymorphisms in Effects of Excessive Fluoride on Thyroid: a School-Based Cross-Sectional Study.
Dental fluorosis
PTPN22
Polymorphisms
TSHR
Thyroid
Journal
Biological trace element research
ISSN: 1559-0720
Titre abrégé: Biol Trace Elem Res
Pays: United States
ID NLM: 7911509
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
11
03
2021
accepted:
05
05
2021
pubmed:
30
5
2021
medline:
19
1
2022
entrez:
29
5
2021
Statut:
ppublish
Résumé
We aimed to investigate the relationship between the effects excessive of fluoride on thyroid health in children and the moderating role of thyroid stimulating hormone receptor (TSHR) or protein tyrosine phosphatase nonreceptor-22 (PTPN22) gene polymorphisms. Four hundred thirteen children (141 with dental fluorosis and 198 boys) were enrolled from both historical endemic and non-endemic areas of fluorosis in Tianjin, China. The fluoride exposure levels, thyroid health indicators, and TSHR (rs2268458) and PTPN22 (rs3765598) polymorphisms were examined. Multiple logistic models were applied to evaluate the relationship between dental fluorosis and thyroid abnormalities. Children over 9 year old with dental fluorosis have lower FT
Identifiants
pubmed: 34050454
doi: 10.1007/s12011-021-02753-8
pii: 10.1007/s12011-021-02753-8
doi:
Substances chimiques
Receptors, Thyrotropin
0
Phosphoric Monoester Hydrolases
EC 3.1.3.2
PTPN22 protein, human
EC 3.1.3.48
Protein Tyrosine Phosphatase, Non-Receptor Type 22
EC 3.1.3.48
Fluorides
Q80VPU408O
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1104-1116Subventions
Organisme : Tianjin Municipal Health Bureau
ID : ZC20048
Organisme : Tianjin Municipal Health Bureau
ID : personnel training project (2018)
Organisme : Science and Technology Committee of Beichen District
ID : SHGY-2020001
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE (2018) Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14(5):301–316. https://doi.org/10.1038/nrendo.2018.18
doi: 10.1038/nrendo.2018.18
pubmed: 29569622
Li Y, Teng D, Ba J, Chen B, Du J, He L, Lai X, Teng X, Shi X, Li Y, Chi H, Liao E, Liu C, Liu L, Qin G, Qin Y, Quan H, Shi B, Sun H, Tang X, Tong N, Wang G, Zhang JA, Wang Y, Xue Y, Yan L, Yang J, Yang L, Yao Y, Ye Z, Zhang Q, Zhang L, Zhu J, Zhu M, Ning G, Mu Y, Zhao J, Shan Z, Teng W (2020) Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of Mainland China. Thyroid 30(4):568–579. https://doi.org/10.1089/thy.2019.0067
doi: 10.1089/thy.2019.0067
pubmed: 32075540
Fan L, Tan L, Chen Y, Du C, Zhu M, Wang K, Wei H, Wang W, Gao M, Zhang Y, Cui T, Chen W, Shen J, Zhang W (2018) Investigation on the factors that influence the prevalence of thyroid nodules in adults in Tianjin, China. J Trace Elem Med Biol 50:537–542. https://doi.org/10.1016/j.jtemb.2018.03.004
doi: 10.1016/j.jtemb.2018.03.004
pubmed: 29544745
Barbier O, Arreola-Mendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188(2):319–333. https://doi.org/10.1016/j.cbi.2010.07.011
doi: 10.1016/j.cbi.2010.07.011
pubmed: 20650267
Singh G, Kumari B, Sinam G, Kriti KN, Mallick S (2018) Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective—a review. Environ Pollut 239:95–108. https://doi.org/10.1016/j.envpol.2018.04.002
doi: 10.1016/j.envpol.2018.04.002
pubmed: 29649763
Srivastava S, Flora SJS (2020) Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr Environ Health Rep 7(2):140–146. https://doi.org/10.1007/s40572-020-00270-9
doi: 10.1007/s40572-020-00270-9
pubmed: 32207100
Abdelaleem MM, El-Tahawy NFG, Abozaid SMM, Abdel-Hakim SA (2018) Possible protective effect of curcumin on the thyroid gland changes induced by sodium fluoride in albino rats: light and electron microscopic study. Endocr Regul 52(2):59–68. https://doi.org/10.2478/enr-2018-0007
doi: 10.2478/enr-2018-0007
pubmed: 29715188
Jiang Y, Guo X, Sun Q, Shan Z, Teng W (2016) Effects of excess fluoride and iodide on thyroid function and morphology. Biol Trace Elem Res 170(2):382–389. https://doi.org/10.1007/s12011-015-0479-0
doi: 10.1007/s12011-015-0479-0
pubmed: 26319807
Liu H, Hou C, Zeng Q, Zhao L, Cui Y, Yu L, Wang L, Zhao Y, Nie J, Zhang B, Wang A (2016) Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide. Environ Toxicol Pharmacol 46:277–285. https://doi.org/10.1016/j.etap.2016.08.007
doi: 10.1016/j.etap.2016.08.007
pubmed: 27522547
Wang M, Liu L, Li H, Li Y, Liu H, Hou C, Zeng Q, Li P, Zhao Q, Dong L, Zhou G, Yu X, Liu L, Guan Q, Zhang S, Wang A (2020) Thyroid function, intelligence, and low-moderate fluoride exposure among Chinese school-age children. Environ Int 134:105229. https://doi.org/10.1016/j.envint.2019.105229
doi: 10.1016/j.envint.2019.105229
pubmed: 31698198
Barberio AM, Hosein FS, Quinonez C, McLaren L (2017) Fluoride exposure and indicators of thyroid functioning in the Canadian population: implications for community water fluoridation. J Epidemiol Community Health 71(10):1019–1025. https://doi.org/10.1136/jech-2017-209129
doi: 10.1136/jech-2017-209129
pubmed: 28839078
Hansen PS, Deure WMVD, Peeters RP, Iachine I, Fenger M, Sørensen TIA, Kyvik KO, Visser TJ, Hegedüs L (2007) The impact of a TSH receptor gene polymorphism on thyroid-related phenotypes in a healthy Danish twin population. Clin Endocrinol (Oxf) 66(6):827–832. https://doi.org/10.1111/j.1365-2265.2007.02820.x
doi: 10.1111/j.1365-2265.2007.02820.x
Palos-Paz F, Perez-Guerra O, Cameselle-Teijeiro J, Rueda-Chimeno C, Barreiro-Morandeira F, Lado-Abeal J, Araujo Vilar D, Argueso R, Barca O, Botana M (2008) Prevalence of mutations in TSHR, GNAS, PRKAR1A and RAS genes in a large series of toxic thyroid adenomas from Galicia, an iodine-deficient area in NW Spain. Eur J Endocrinol 159(5):623–631. https://doi.org/10.1530/eje-08-0313
doi: 10.1530/eje-08-0313
pubmed: 18694911
Dechairo BM, Zabaneh D, Collins J, Brand O, Dawson GJ, Green AP, Mackay I, Franklyn JA, Connell JM, Wass JAH (2005) Association of the TSHR gene with Graves’ disease: the first disease specific locus. Eur J Hum Genet 13(11):1223–1230. https://doi.org/10.1038/sj.ejhg.5201485
doi: 10.1038/sj.ejhg.5201485
pubmed: 16106256
Alkhateeb A, Marzouka NA, Tashtoush R (2013) Variants in PTPN22 and SMOC2 genes and the risk of thyroid disease in the Jordanian Arab population. Endocrine 44:702–709. https://doi.org/10.1007/s12020-013-9908-z
doi: 10.1007/s12020-013-9908-z
pubmed: 23463390
Lee HS, Kang J, Yang S, Kim D, Park Y (2011) Susceptibility influence of a PTPN22 haplotype with thyroid autoimmunity in Koreans. Diabetes Metab Res Rev 27(8):878–882. https://doi.org/10.1002/dmrr.1265
doi: 10.1002/dmrr.1265
pubmed: 22069277
Luo L, Cai B, Liu F, Hu X, Wang L (2012) Association of protein tyrosine phosphatase nonreceptor 22 (PTPN22) C1858T gene polymorphism with susceptibility to autoimmune thyroid diseases: a meta-analysis. Endocr J 59(5):439–445. https://doi.org/10.1507/endocrj.ej11-0381
doi: 10.1507/endocrj.ej11-0381
pubmed: 22374238
Zhai X, Zhang L, Chen L, Lian X, Liu C, Shi B, Shi L, Tong N, Wang S, Weng J, Zhao J, Teng X, Yu X, Lai Y, Wang W, Li C, Mao J, Li Y, Fan C, Li L, Shan Z, Teng W (2018) An age-specific serum thyrotropin reference range for the diagnosis of thyroid diseases in older adults: a cross-sectional survey in China. Thyroid 28(12):1571–1579. https://doi.org/10.1089/thy.2017.0715
doi: 10.1089/thy.2017.0715
pubmed: 30351201
WHO, UNICEF, ICCIDD (2007) Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 3rd edn. WHO & UNICEF & ICCIDD, Geneva
Ittermann T, Völzke H, Baumeister SE, Appel K, Grabe HJ (2015) Diagnosed thyroid disorders are associated with depression and anxiety. Soc Psychiatry Psychiatr Epidemiol 50(9):1417–1425. https://doi.org/10.1007/s00127-015-1043-0
doi: 10.1007/s00127-015-1043-0
pubmed: 25777685
Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R (2013) Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013:965212–965210. https://doi.org/10.1155/2013/965212
doi: 10.1155/2013/965212
pubmed: 23737785
pmcid: 3664492
Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, Ahlbom A (2005) Calculating measures of biological interaction. Eur J Epidemiol 20(7):575–579. https://doi.org/10.1007/s10654-005-7835-x
doi: 10.1007/s10654-005-7835-x
pubmed: 16119429
Rango T, Vengosh A, Jeuland M, Whitford G, Teklehaimanot R (2017) Biomarkers of chronic fluoride exposure in groundwater in a highly exposed population. Sci Total Environ 596:1–11. https://doi.org/10.1016/j.scitotenv.2017.04.021
doi: 10.1016/j.scitotenv.2017.04.021
pubmed: 28411405
Rugggunn AJ, Villa AE, Buzalaf MRA (2011) Contemporary biological markers of exposure to fluoride. Monogr Oral Sci 22:37–51. https://doi.org/10.1159/000325137
doi: 10.1159/000325137
Fordyce F (2011) Fluorine – Human Health Risks. In: Jo N (ed) Encyclopedia of Environmental Health, vol 2. Elsevier, Burlington, pp 776–785
doi: 10.1016/B978-0-444-52272-6.00697-8
Ge Y, Ning H, Gu X, Yin M, Yang X, Qi Y, Wang J (2013) Effects of high fluoride and low iodine on thyroid function in offspring rats. J Integr Agric 12(3):502–508. https://doi.org/10.1016/S2095-3119(13)60251-8
doi: 10.1016/S2095-3119(13)60251-8
Parents of Fluoride Poisoned Children (PFPC) (2003) Fluoride = TSH. https://poisonfluoride.com/Science/TSH/tsh.html .
Kollati Y, Akella RRD, Naushad SM, Thalla M, Reddy GB, Dirisala VR (2020) The rs1991517 polymorphism is a genetic risk factor for congenital hypothyroidism. 3. Biotech 10(6):285. https://doi.org/10.1007/s13205-020-02273-7
doi: 10.1007/s13205-020-02273-7
Zaaber I, Mestiri S, Marmouch H, Bel Hadj Jrad Tensaout B (2020) Polymorphisms in TSHR gene and the risk and prognosis of autoimmune thyroid disease in Tunisian population. Acta Endocrinol (Buchar) 16(1):1–8. https://doi.org/10.4183/aeb.2020.1
doi: 10.4183/aeb.2020.1
Su X, Lin LW, Weng JL, Chen SW, Yang XH, Zhou DL, Long YK, Shao Q, Ye ZL, Peng JL, Deng L, He CY, Yang AK (2019) TSHR rs2288496 associated with thyroid hormone and predict the occurrence of lymph node metastasis of papillary thyroid cancer. Cancer Biomark 26(4):461–470. https://doi.org/10.3233/CBM-190630
doi: 10.3233/CBM-190630
pubmed: 31658048
Eliana F, Suwondo P, Asmarinah A, Harahap A, Djauzi S, Prihartono J, Pemayun TGD (2017) The role of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) gene, thyroid stimulating hormone receptor (TSHR) gene and regulatory T-cells as risk factors for relapse in patients with Graves disease. Acta Med Indones 49(3):195–204
pubmed: 29093229
Yin X, Latif R, Bahn R, Tomer Y, Davies TF (2008) Influence of the TSH receptor gene on susceptibility to Graves’ disease and Graves’ ophthalmopathy. Thyroid 18(11):1201–1206. https://doi.org/10.1089/thy.2008.0098
doi: 10.1089/thy.2008.0098
pubmed: 18925838
pmcid: 2857451
Tang L, Wang Y, Zheng S, Bao M, Zhang Q, Li J (2016) PTPN22 polymorphisms, but not R620W, were associated with the genetic susceptibility of systemic lupus erythematosus and rheumatoid arthritis in a Chinese Han population. Hum Immunol 77(8):692–698. https://doi.org/10.1016/j.humimm.2016.04.021
doi: 10.1016/j.humimm.2016.04.021
pubmed: 27166176
Knol MJ, van der Tweel I, Grobbee DE, Numans ME, Geerlings MI (2007) Estimating interaction on an additive scale between continuous determinants in a logistic regression model. Int J Epidemiol 36(5):1111–1118. https://doi.org/10.1093/ije/dym157
doi: 10.1093/ije/dym157
pubmed: 17726040
Rothman KJ (2002) Epidemiology: an introduction. Oxford University Press, Oxford