Bioluminescence Resonance Energy Transfer (BRET) Imaging in Living Cells: Image Acquisition and Quantification.
BRET
EM-CCD
Fluorescent protein
Imaging
Luciferase
Luminescence
Microscopy
Photon counting
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
29
5
2021
pubmed:
30
5
2021
medline:
22
6
2021
Statut:
ppublish
Résumé
Bioluminescence resonance energy transfer (BRET) is an energy transfer phenomenon from a luciferase donor to a fluorescence acceptor and serves as an indicator of protein-protein interaction or protein proximity. BRET imaging is a powerful tool in the investigation of signaling proteins because it enables spatial analysis of such protein interactions. Here, we describe a method exerting high-resolution BRET imaging by combining bright-light output luciferases, such as NanoLuc , photon-counting EM-CCD, and unique algorithms for image correction and denoising.
Identifiants
pubmed: 34050482
doi: 10.1007/978-1-0716-1258-3_26
doi:
Substances chimiques
Luminescent Agents
0
Luciferases
EC 1.13.12.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
305-314Références
Galés C, Rebois RV, Hogue M et al (2005) Real-time monitoring of receptor and G protein interactions in living cells. Nat Methods 2:177–184
Kobayashi H, Ogawa K, Yao R et al (2009) Functional rescue of beta-adrenoceptor dimerization and trafficking by pharmacological chaperones. Traffic 10:1019–1033
doi: 10.1111/j.1600-0854.2009.00932.x
Mercier J-F, Salahpour A, Angers S et al (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277:44925–44931
doi: 10.1074/jbc.M205767200
Terrillon S, Barberis C, Bouvier M (2004) Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with beta-arrestin and their trafficking patterns. Proc Natl Acad Sci U S A 101:1548–1553
Héroux M, Breton B, Hogue M et al (2007) Assembly and signaling of CRLR and RAMP1 complexes assessed by BRET. Biochemistry 46:7022–7033
doi: 10.1021/bi0622470
Namkung Y, le Gouill C, Lukashova V et al (2016) Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun 7:12178
doi: 10.1038/ncomms12178
Kobayashi H, Picard L-P, Schönegge A-M et al (2019) Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living Cells. Nat Protocols 14:1084–1107
Azzari L, Foi A (2016) Variance stabilization for noisy+estimate combination in iterative poisson denoising. IEEE Signal Proc Lett 23:1086–1090
doi: 10.1109/LSP.2016.2580600
Hall MP, Unch J, Binkowski BF et al (2012) Engineered luciferase reporter from a deep-sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857
doi: 10.1021/cb3002478
Goyet E, Bouquier N, Ollendorff V et al (2016) Fast- and high-resolution single-cell BRET imaging. Sci Rep 6:28231
doi: 10.1038/srep28231
Xu X, Soutto M, Xie Q et al (2007) Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci U S A 104:10264–10269
doi: 10.1073/pnas.0701987104
Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360
doi: 10.1038/nbt1066
Chu J, Oh Y, Sens A et al (2016) A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging In Vivo. Nat Biotechnol 34:760–767
doi: 10.1038/nbt.3550
Basden AG, Haniff CA, Mackay CD (2003) Photon-counting strategies with low-light-level CCDs. Mon Not Roy Astron Soc 345:985–991
doi: 10.1046/j.1365-8711.2003.07020.x