Connexin32 activates necroptosis through Src-mediated inhibition of caspase 8 in hepatocellular carcinoma.
Animals
Apoptosis
/ drug effects
Carcinoma, Hepatocellular
/ genetics
Caspase 8
/ metabolism
Cell Line, Tumor
Cell Proliferation
/ drug effects
Connexins
/ genetics
Gene Knockdown Techniques
Humans
Liver Neoplasms
/ genetics
Male
Mice
Mice, Inbred BALB C
Mice, Nude
Naphthoquinones
/ administration & dosage
Necroptosis
/ drug effects
Nuclear Receptor Coactivator 1
/ genetics
Phosphorylation
/ drug effects
Signal Transduction
/ drug effects
Transfection
Tumor Burden
/ drug effects
Gap Junction beta-1 Protein
Src
caspase 8
connexin32
hepatocellular carcinoma
necroptosis
Journal
Cancer science
ISSN: 1349-7006
Titre abrégé: Cancer Sci
Pays: England
ID NLM: 101168776
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
revised:
19
05
2021
received:
07
02
2021
accepted:
25
05
2021
pubmed:
30
5
2021
medline:
15
9
2021
entrez:
29
5
2021
Statut:
ppublish
Résumé
Necroptosis is an alternative form of programmed cell death that generally occurs under apoptosis-deficient conditions. Our previous work showed that connexin32 (Cx32) promotes the malignant progress of hepatocellular carcinoma (HCC) by enhancing the ability of resisting apoptosis in vivo and in vitro. Whether triggering necroptosis is a promising strategy to eliminate the apoptosis-resistant HCC cells with high Cx32 expression remains unknown. In this study, we found that Cx32 expression was positively correlated with the expression of necroptosis protein biomarkers in human HCC specimens, cell lines, and a xenograft model. Treatment with shikonin, a well-used necroptosis inducer, markedly caused necroptosis in HCC cells. Interestingly, overexpressed Cx32 exacerbated shikonin-induced necroptosis, but downregulation of Cx32 alleviated necroptosis in vitro and in vivo. Mechanistically, Cx32 was found to bind to Src and promote Src-mediated caspase 8 phosphorylation and inactivation, which ultimately reduced the activated caspase 8-mediated proteolysis of receptor-interacting serine-threonine protein kinase 1/3, the key molecule for necroptosis activation. In conclusion, we showed that Cx32 contributed to the activation of necroptosis in HCC cells through binding to Src and then mediating the inactivation of caspase 8. The present study suggested that necroptosis inducers could be more favorable than apoptosis inducers to eliminate HCC cells with high expression of Cx32.
Identifiants
pubmed: 34050696
doi: 10.1111/cas.14994
pmc: PMC8409421
doi:
Substances chimiques
Connexins
0
Naphthoquinones
0
shikonin
3IK6592UBW
NCOA1 protein, human
EC 2.3.1.48
Nuclear Receptor Coactivator 1
EC 2.3.1.48
CASP8 protein, human
EC 3.4.22.-
Caspase 8
EC 3.4.22.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3507-3519Subventions
Organisme : National Natural Science Foundation of China
ID : 81473234
Organisme : Joint Fund of the National Natural Science Foundation of China
ID : U1303221
Organisme : Fundamental Research Funds for the Central Universities
ID : 16ykjc01
Organisme : Department of Science and Technology of Guangdong Province
ID : 20160908
Organisme : High-level University Construction Fund of Guangdong Province
ID : 06-410-2107209
Informations de copyright
© 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Références
Nature. 2019 Oct;574(7778):428-431
pubmed: 31511692
Onco Targets Ther. 2019 Apr 09;12:2605-2614
pubmed: 31118661
Pharmacol Ther. 2021 Apr;220:107717
pubmed: 33164841
Cold Spring Harb Protoc. 2016 Apr 01;2016(4):pdb.top070375
pubmed: 27037077
J Exp Clin Cancer Res. 2019 Apr 4;38(1):145
pubmed: 30947731
Cell Signal. 2007 Oct;19(10):2056-67
pubmed: 17644308
Cancer Lett. 2009 Feb 18;274(2):233-42
pubmed: 19027226
Cold Spring Harb Perspect Biol. 2020 Aug 3;12(8):
pubmed: 31712266
Semin Cell Dev Biol. 2018 Oct;82:105-117
pubmed: 29410361
Cell. 2012 Jan 20;148(1-2):213-27
pubmed: 22265413
Immunol Rev. 2017 May;277(1):76-89
pubmed: 28462525
Cells. 2019 Aug 14;8(8):
pubmed: 31416286
Int J Cancer. 2007 Aug 1;121(3):536-46
pubmed: 17372902
J Exp Med. 2017 Jun 5;214(6):1655-1662
pubmed: 28476895
Nature. 2019 Nov;575(7784):679-682
pubmed: 31723262
Oncogene. 2019 Feb;38(6):822-837
pubmed: 30177841
Oncogene. 2017 Mar;36(11):1487-1502
pubmed: 27869161
Exp Cell Res. 2016 Sep 10;347(1):114-122
pubmed: 27432652
Int J Biol Sci. 2018 Oct 20;14(13):1883-1891
pubmed: 30443191
Cell Mol Life Sci. 2016 Jun;73(11-12):2153-63
pubmed: 27048809
Cell Death Dis. 2017 May 11;8(5):e2773
pubmed: 28492539
Int J Mol Sci. 2019 May 19;20(10):
pubmed: 31109150
J Exp Clin Cancer Res. 2018 Dec 12;37(1):310
pubmed: 30541583
Cells. 2020 Dec 17;9(12):
pubmed: 33348858
Cell Death Dis. 2019 Oct 10;10(10):767
pubmed: 31601792
Acta Pharm Sin B. 2020 Sep;10(9):1601-1618
pubmed: 33088682
Oncogene. 2016 Oct 27;35(43):5629-5640
pubmed: 27109099
Immunity. 2020 Jun 16;52(6):994-1006.e8
pubmed: 32428502
Cells. 2019 Nov 21;8(12):
pubmed: 31766571
Cancer Sci. 2021 Sep;112(9):3507-3519
pubmed: 34050696
Cell Commun Adhes. 2008 May;15(1):107-18
pubmed: 18649183
Int J Mol Sci. 2015 Dec 18;16(12):30321-41
pubmed: 26694384
Biomolecules. 2020 Dec 10;10(12):
pubmed: 33321749
BMB Rep. 2012 Sep;45(9):496-508
pubmed: 23010170
Int J Cancer. 2011 Jan 1;128(1):51-62
pubmed: 20209499
Acta Pharmacol Sin. 2017 Nov;38(11):1543-1553
pubmed: 28816233
Semin Cell Dev Biol. 2015 Mar;39:63-9
pubmed: 25736836
Cancers (Basel). 2020 Nov 09;12(11):
pubmed: 33182480
Curr Res Transl Med. 2021 Jan;69(1):103268
pubmed: 33069641
Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):48-64
pubmed: 28526583