Intraocular epidermal growth factor concentration, axial length, and high axial myopia.
Axial elongation
Epidermal growth factor
Myopia
Myopic maculopathy
Journal
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
received:
07
10
2020
accepted:
11
04
2021
revised:
12
03
2021
pubmed:
30
5
2021
medline:
21
10
2021
entrez:
29
5
2021
Statut:
ppublish
Résumé
Various molecules such as dopamine have been found to be associated with axial elongation in experimental studies. Here, we examined whether intraocular EGF is associated with axial length in myopic patients. The hospital-based investigation included patients of European descent without optic nerve, retinal, or macular diseases except for myopic maculopathy. Using aqueous humor samples collected during surgery, the EGF concentration was examined applying a cytometric bead array. High myopia was defined by an axial length of ≥ 27.0 mm. The study included a non-highly myopic group of 11 patients (mean age, 72.9 ± 10.8 years; mean axial length, 24.3 ± 1.1 mm) and a highly myopic group of three patients (age, 81.11 ± 12.3 years; axial length, 29.5 ± 1.3 mm), with one of them having pathologic myopic maculopathy. In multivariable linear regression analysis, higher EGF concentration was correlated with the highly myopic versus non-highly myopic group (beta, 1.24; non-standardized correlation coefficient B, 6.24; 95% confidence interval (CI), 0.10,12.4;P = 0.047) after adjusting for axial length. The amount of intraocular EGF was significantly higher in the highly myopic group than in the non-highly myopic group (89.1 ± 40.8 pg versus 34.1 ± 13.2 pg; P = 0.005), and it was highest in the eye with myopic maculopathy (135 pg). The intraocular amount of EGF is higher in highly myopic versus non-highly myopic eyes.
Identifiants
pubmed: 34050811
doi: 10.1007/s00417-021-05200-5
pii: 10.1007/s00417-021-05200-5
pmc: PMC8523420
doi:
Substances chimiques
Epidermal Growth Factor
62229-50-9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3229-3234Informations de copyright
© 2021. The Author(s).
Références
Morgan IG, Ohno-Matsui K, Saw SM (2012) Lancet 379:1739–1748
doi: 10.1016/S0140-6736(12)60272-4
Baird PN, Saw SM, Lanca C, Guggenheim JA, Smith EL III, Zhou X, Ohno-Matsui K, Wu PC, Sankaridurg P, Chia A, Rosman M, Lamoureux EL, Man R, He M (2020) Myopia. Nat Rev Dis Primers 6:99
doi: 10.1038/s41572-020-00231-4
Jonas JB, Ohno-Matsui K, Holbach L, Panda-Jonas S (2017) Retinal pigment epithelium cell density in relationship to axial length in human eyes. Acta Ophthalmol 95:e22–e28
doi: 10.1111/aos.13188
Jonas JB, Xu L, Wei WB, Pan Z, Yang H, Holbach L, Panda-Jonas S, Wang YX (2016) Retinal thickness and axial length. Invest Ophthalmol Vis Sci 57:1791–1797
doi: 10.1167/iovs.15-18529
Shen L, You QS, Xu X, Gao F, Zhang Z, Li B, Jonas JB (2016) Scleral and choroidal volume in relation to axial length in infants with retinoblastoma versus adults with malignant melanomas or end-stage glaucoma. Graefes Arch Clin Exp Ophthalmol 254:1779–1786
doi: 10.1007/s00417-016-3345-7
Heine L (1899) Beiträge zur Anatomie des myopischen Auges. Arch Augenheilk 38:277–290
Vurgese S, Panda-Jonas S, Jonas JB (2012) Sclera thickness in human globes and its relations to age, axial length and glaucoma. PLoS ONE 7:e29692
doi: 10.1371/journal.pone.0029692
Jonas JB, Holbach L, Panda-Jonas S (2014) Bruch´s membrane thickness in high myopia. Acta Ophthalmol 92:e470-474
doi: 10.1111/aos.12372
Bai HX, Mao Y, Shen L, Xu XL, Gao F, Zhang ZB, Li B, Jonas JB (2017) Bruch´s membrane thickness in relationship to axial length. PLoS ONE 12:e0182080
doi: 10.1371/journal.pone.0182080
Dong L, Shi XH, Kang YK, Wei WB, Wang YX, Xu XL, Gao F, Jonas JB (2019) Bruch’s membrane thickness and retinal pigment epithelium cell density in experimental axial elongation. Sci Rep 9:6621
doi: 10.1038/s41598-019-43212-8
Jonas JB, Ohno-Matsui K, Jiang WJ, Panda-Jonas S (2017) Bruch membrane and the mechanism of myopization. A new theory Retina 37:1428–1440
pubmed: 28085774
Jonas JB, Ohno-Matsui K, Panda-Jonas S (2019) Myopia: Anatomic changes and consequences for its etiology. Asia Pac J Ophthalmol (Phila) 8:355–359
doi: 10.1097/01.APO.0000578944.25956.8b
Gao Q, Liu Q, Ma P, Zhong X, Wu J, Ge J (2006) Effects of direct intravitreal dopamine injections on the development of lid-suture induced myopia in rabbits. Graefes Arch Clin Exp Ophthalmol 244:1329–1335
doi: 10.1007/s00417-006-0254-1
McCarthy CS, Megaw P, Devadas M, Morgan IG (2007) Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp Eye Res 84:100–107
doi: 10.1016/j.exer.2006.09.018
Mao J, Liu S, Qin W, Li F, Wu X, Tan Q (2010) Levodopa inhibits the development of form-deprivation myopia in guinea pigs. Optom VisSci 87:53–60
Jiang L, Long K, Schaeffel F, Zhou X, Zheng Y, Ying H, Lu F, Stell WK, Qu J (2014) Effects of dopaminergic agents on progression of naturally occurring myopia in albino guinea pigs (Cavia porcellus). Invest Ophthalmol Vis Sci 55:7508–7519
doi: 10.1167/iovs.14-14294
Yen MY, Liu JH, Kao SC, Shiao CH (1989) Comparison of the effect of atropine and cyclopentolate on myopia. Ann Ophthalmol 21:180–182
pubmed: 2742290
Barathi VA, Weon SR, Beuerman RW (2009) Expression of muscarinic receptors in human and mouse sclera and their role in the regulation of scleral fibroblasts proliferation. Mol Vis 15:1277–1293
pubmed: 19578554
pmcid: 2704914
Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, Tan D (2006) Atropine for the treatment of childhood myopia. Ophthalmology 113:2285–2291
doi: 10.1016/j.ophtha.2006.05.062
Flitcroft DI (2012) The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res 31:622–660
doi: 10.1016/j.preteyeres.2012.06.004
Mao J, Liu S, Fu C (2016) Citicoline retards myopia progression following form deprivation in guinea pigs. Exp Biol Med (Maywood) 241:1258–1263
doi: 10.1177/1535370216638773
Rohrer B, Stell WK (1994) Basic fibroblast growth factor (bFGF) and transforming growth factor beta (TGF-beta) act as stop and go signals to modulate postnatal ocular growth in the chick. Exp Eye Res 58:553–561
doi: 10.1006/exer.1994.1049
Seko Y, Shimokawa H, Tokoro T (1995) Expression of bFGF and TGF-beta 2 in experimental myopia in chicks. Invest Ophthalmol Vis Sci 36:1183–1187
pubmed: 7730028
McBrien NA (2013) Regulation of scleral metabolism in myopia and the role of transforming growth factor-beta. Exp Eye Res 114:128–140
doi: 10.1016/j.exer.2013.01.014
Li XJ, Yang XP, Wan GM, Wang YY, Zhang JS (2014) Effects of hepatocyte growth factor on MMP-2 expression in scleral fibroblasts from a guinea pig myopia model. Int J Ophthalmol 7:239–244
pubmed: 24790864
pmcid: 4003076
Li XJ, Yang XP, Wan GM, Wang YY, Zhang JS (2013) Expression of hepatocyte growth factor and its receptor c-Met in lens-induced myopia in guinea pigs. Chin Med J (Engl) 126:4524–4527
Cheng T, Wang J, Xiong S, Zhang B, Li Q, Xu X, He X (2020) Association of IGF1 single-nucleotide polymorphisms with myopia in Chinese children. PeerJ 8:e8436
doi: 10.7717/peerj.8436
Jia Y, Hu DN, Zhou J (2014) Human aqueous humor levels of TGF- β2: relationship with axial length. Biomed Res Int 2014:258591
pubmed: 24967344
pmcid: 4055366
Chen BY, Wang CY, Chen WY, Ma JX (2013) Altered TGF-β2 and bFGF expression in scleral desmocytes from an experimentally-induced myopia guinea pig model. Graefes Arch Clin Exp Ophthalmol 251:1133–1144
doi: 10.1007/s00417-013-2269-8
Jiang WJ, Song HX, Li SY, Guo B, Wu JF, Li GP, Guo DD, Shi DL, Bi HS, Jonas JB (2017) Amphiregulin antibody and reduction of axial elongation in experimental myopia. EBioMedicine 17:134–144
doi: 10.1016/j.ebiom.2017.02.021
Dong L, Shi XH, Kang YK, Wei WB, Wang YX, Xu XL, Gao F, Yuan LH, Zhen J, Jiang WJ, Jonas JB (2019) Amphiregulin and ocular axial length. Acta Ophthalmol 97:e460–e470
doi: 10.1111/aos.14080
Dong L, Shi XH, Li YF, Jiang X, Wang YX, Lan YJ, Wu HAT, Jonas JB, Wei WB (2020) Blockade of epidermal growth factor and its receptor and axial elongation in experimental myopia. FASEB J. https://doi.org/10.1096/fj.202001095RR . Online ahead of print
doi: 10.1096/fj.202001095RR
pubmed: 33230951
Jonas JB, Tao Y, Neumaier M, Findeisen P (2010) VEGF and refractive error. Ophthalmology 117:2234-U235
doi: 10.1016/j.ophtha.2009.12.006
Jonas JB, Tao Y, Neumaier M, Findeisen P (2012) Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol 90:e381-388
doi: 10.1111/j.1755-3768.2012.02414.x
Wong CW, Yanagi Y, Tsai ASH, Shihabuddeen WA, Cheung N, Lee SY, Jonas JB, Cheung CMG (2019) Correlation of axial length and myopic macular degeneration to levels of molecular factors in the aqueous. Sci Rep 9:15708
doi: 10.1038/s41598-019-52156-y
Chin HS, Park TS, Moon YS, Oh JH (2005) Difference in clearance of intravitreal triamcinolone acetonide between vitrectomized and nonvitrectomized eyes. Retina 25:556–560
doi: 10.1097/00006982-200507000-00002
Zhu D, Yang DY, Guo YY, Zheng YF, Li JL, Wang B, Tao Y, Jonas JB (2015) Intracameral interleukin 1β, 6, 8, 10, 12p, tumor necrosis factor α and vascular endothelial growth factor and axial length in patients with cataract. PLoS ONE 10:e0117777
doi: 10.1371/journal.pone.0117777
Kamppeter BA, Cej A, Jonas JB (2008) Intraocular concentration of triamcinolone acetonide after intravitreal injection in the rabbit eye. Ophthalmology 115:1372–1375
doi: 10.1016/j.ophtha.2008.01.019