A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H

cluster compounds hydrogen polyoxometalates silver nanoclusters

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
26 Jul 2021
Historique:
received: 20 05 2021
pubmed: 30 5 2021
medline: 30 5 2021
entrez: 29 5 2021
Statut: ppublish

Résumé

Atomically precise silver (Ag) nanoclusters are promising materials as catalysts, photocatalysts, and sensors because of their unique structures and mixed-valence states (Ag

Identifiants

pubmed: 34051034
doi: 10.1002/anie.202106786
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16994-16998

Subventions

Organisme : Precursory Research for Embryonic Science and Technology
ID : JPMJPR18T7 and JPMJPR19T9
Organisme : Japan Society for the Promotion of Science
ID : KAKENHI Grant Numbers 20H02749, 20H04659, 17H03037
Organisme : Japan Society for the Promotion of Science
ID : Core-to-Core program

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

 
R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346-10413;
I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208-8271;
Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev. 2020, 120, 526-622;
Y.-P. Xie, Y.-L. Shen, G.-X. Duan, J. Han, L.-P. Zhang, X. Lu, Mater. Chem. Front. 2020, 4, 2205-2222;
G.-G. Luo, Q.-L. Guo, Z. Wang, C.-F. Sun, J.-Q. Lin, D. Sun, Dalton Trans. 2020, 49, 5406-5415;
Y. Liu, X. Chai, X. Cai, M. Chen, R. Jin, W. Ding, Y. Zyu, Angew. Chem. Int. Ed. 2018, 57, 9775-9779;
Angew. Chem. 2018, 130, 9923-9927.
 
D. Sun, G.-G. Luo, N. Zhang, R.-B. Huang, L.-S. Zheng, Chem. Commun. 2011, 47, 1461-1463;
C. P. Joshi, M. S. Bootharaju, M. J. Alhilaly, O. M. Bakr, J. Am. Chem. Soc. 2015, 137, 11578-11581;
R. S. Dhayal, J.-H. Liao, Y.-C. Liu, M.-H. Chiang, S. Kahlal, J.-Y. Saillard, C. W. Liu, Angew. Chem. Int. Ed. 2015, 54, 3702-3706;
Angew. Chem. 2015, 127, 3773-3777;
L. Ren, P. Yuan, H. Su, S. Malola, S. Lin, Z. Tang, B. K. Teo, H. Häkkinen, J. Am. Chem. Soc. 2017, 139, 13288-13291;
A. Desireddy, B. E. Conn, J. Guo, B. Yoon, R. N. Barnett, B. M. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landman, T. P. Bigioni, Nature 2013, 501, 399-402;
H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Häkkinen, N. Zheng, Nat. Commun. 2013, 4, 2422;
W. Du, S. Jin, L. Xiong, M. Chen, J. Zhang, X. Zou, Y. Pei, S. Wang, M. Zhu, J. Am. Chem. Soc. 2017, 139, 1618-1624;
H. Yang, J. Yan, Y. Wang, H. Su, L. Gell, X. Zhao, C. Xu, B. K. Teo, H. Häkkinen, N. Zheng, J. Am. Chem. Soc. 2017, 139, 31-34;
S.-F. Yuan, Z.-J. Guan, W.-D. Liu, Q.-M. Wang, Nat. Commun. 2019, 10, 4032;
K.-G. Liu, X.-M. Gao, T. Liu, M.-L. Hu, D.-E. Jiang, J. Am. Chem. Soc. 2020, 142, 16905-16909.
 
M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer, Berlin, 1983;
M. Sadakane, E. Steckhan, Chem. Rev. 1998, 98, 219-238;
H. Lv, Y. V. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev, C. L. Hill, Chem. Soc. Rev. 2012, 41, 7572-7589;
S.-S. Wang, G.-Y. Yang, Chem. Rev. 2015, 115, 4893-4962;
I. A. Weinstock, R. E. Schreiber, R. Neumann, Chem. Rev. 2018, 118, 2680-2717;
H. N. Miras, J. Yan, D.-L. Long, L. Cronin, Chem. Soc. Rev. 2012, 41, 7403-7430;
M. Lechner, R. Gütte, C. Streb, Dalton Trans. 2016, 45, 16716-16726;
K. Suzuki, N. Mizuno, K. Yamaguchi, ACS Catal. 2018, 8, 10809-10825;
S. Uchida, Chem. Sci. 2019, 10, 7670-7679.
 
K. Suzuki, Y. Kikukawa, S. Uchida, H. Tokoro, K. Imoto, S. Ohkoshi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 1597-1601;
Angew. Chem. 2012, 124, 1629-1633;
K. Suzuki, F. Tang, Y. Kikukawa, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2014, 53, 5356-5360;
Angew. Chem. 2014, 126, 5460-5464;
T. Minato, K. Suzuki, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2016, 55, 9630-9633;
Angew. Chem. 2016, 128, 9782-9785;
T. Minato, K. Suzuki, Y. Ohata, K. Yamaguchi, N. Mizuno, Chem. Commun. 2017, 53, 7533-7536;
K. Suzuki, T. Minato, N. Tominaga, I. Okumo, K. Yonesato, N. Mizuno, K. Yamaguchi, Dalton Trans. 2019, 48, 7281-7289;
S. Sasaki, K. Yonesato, N. Mizuno, K. Yamaguchi, K. Suzuki, Inorg. Chem. 2019, 58, 7722-7729;
C. Li, A. jimbo, K. Yamaguchi, K. Suzuki, Chem. Sci. 2021, 12, 1240-1244.
K. Yonesato, H. Ito, H. Itakura, D. Yokogawa, T. Kikuchi, N. Mizuno, K. Yamaguchi, K. Suzuki, J. Am. Chem. Soc. 2019, 141, 19550-19554.
K. Yonesato, H. Ito, D. Yokogawa, K. Yamaguchi, K. Suzuki, Angew. Chem. Int. Ed. 2020, 59, 16361-16365;
Angew. Chem. 2020, 132, 16503-16507.
 
X.-Y. Dong, Z.-W. Gao, K.-F. Yang, W.-Q. Zhang, L.-W. Xu, Catal. Sci. Technol. 2015, 5, 2554-2574;
J. T. Gleaves, A. G. Sault, R. J. Madix, J. Ebners, J. Catal. 1990, 121, 202-218;
R. B. Grant, R. M. Lambert, J. Catal. 1985, 92, 364-375;
T. Mitsudome, S. Arita, H. Mori, T. Mizugaki, K. Jitsukawa, K. Kaneda, Angew. Chem. Int. Ed. 2008, 47, 7938-7940;
Angew. Chem. 2008, 120, 8056-8058;
Y. Mikami, A. Noujima, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K. Kaneda, Chem. Lett. 2010, 39, 223-225;
T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K. Jitsukawa, K. Kaneda, Chem. Commun. 2009, 3258-3260;
K. Shimizu, K. Ohshima, A. Satsuma, Chem. Eur. J. 2009, 15, 9977-9980;
T. Mitsudome, Y. Mikami, M. Matoba, T. Mizugaki, K. Jitsukawa, K. Kaneda, Angew. Chem. Int. Ed. 2012, 51, 136-139;
Angew. Chem. 2012, 124, 140-143.
 
L. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev. 2020, 120, 683-733;
R. Prins, Chem. Rev. 2012, 112, 2714-2738;
J. Zhang, L. Li, X. Huang, G. Li, J. Mater. Chem. 2012, 22, 10480-10487.
 
K. Nagata, T. Murosaki, T. Agou, T. Sasamori, T. Matsuo, N. Tokitoh, Angew. Chem. Int. Ed. 2016, 55, 12877-12880;
Angew. Chem. 2016, 128, 13069-13072;
E. von Grotthuss, M. Diefenbach, M. Bolte, H. W. Lerner, M. C. Holthausen, M. Wagner, Angew. Chem. Int. Ed. 2016, 55, 14067-14071;
Angew. Chem. 2016, 128, 14273-14277.
 
G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Setephan, Science 2006, 314, 1124-1126;
G. C. Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880-1881.
 
P. Sabatier, Ind. Eng. Chem. 1926, 18, 1005;
P. Serna, A. Corma, ACS Catal. 2015, 5, 7114-7121;
A. M. Smith, R. Whyman, Chem. Rev. 2014, 114, 5477;
S. Itagaki, K. Yamaguchi, N. Mizuno, Chem. Mater. 2011, 23, 4102-4104.
 
M. Ito, T. Ikariya, Chem. Commun. 2007, 5134-5142;
Y. Misumi, H. Seino, Y. Mizobe, J. Am. Chem. Soc. 2009, 131, 14636-14637.
P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Fröhlich, G. Erker, Angew. Chem. Int. Ed. 2008, 47, 7543-7546;
Angew. Chem. 2008, 120, 7654-7657.
 
S. Shima, O. Pilak, S. Vogt, M. Schick, M. S. Stagni, W. M. Klaucke, E. Warkentin, R. K. Thauer, U. Ermler, Science 2008, 321, 572-575;
W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Chem. Rev. 2014, 114, 4081;
H. Land, M. Senger, G. Berggren, S. T. Stripp, ACS Catal. 2020, 10, 7069-7086.
 
S. Ogo, K. Ichiklawa, T. Kishima, T. Matsumoto, H. Nakai, K. Kusaka, T. Ohhara, Science 2013, 339, 682-684;
T. Liu, X. Wang, C. Hoffmann, D. L. DuBois, M. Bullock, Angew. Chem. Int. Ed. 2014, 53, 5300-5304;
Angew. Chem. 2014, 126, 5404-5408.
 
Y. Zhu, H. Qian, B. A. Drake, R. Jin, Angew. Chem. Int. Ed. 2010, 49, 1295-1298;
Angew. Chem. 2010, 122, 1317-1320;
G. Li, D.-E. Jiang, S. Kumar, Y. Chen, R. Jin, ACS Catal. 2014, 4, 2463-2469.
 
S. Takano, H. Hirai, S. Muramatsu, T. Tsukuda, J. Am. Chem. Soc. 2018, 140, 8380-8383;
J. Dong, Z.-H. Gao, Q.-F. Zhang, L.-S. Wang, Angew. Chem. Int. Ed. 2021, 60, 2424-2430;
Angew. Chem. 2021, 133, 2454-2460.
 
M. S. Bootharaju, R. Dey, L. E. Gevers, M. N. Hedhili, J.-M. Basset, O. M. Bakr, J. Am. Chem. Soc. 2016, 138, 13770-13773;
M. Jash, E. Khatun, P. Chakraborty, C. Sudhakar, T. Pradeep, J. Phys. Chem. C 2020, 124, 20569-20577.
E. Papaconstantinou, Chem. Soc. Rev. 1989, 18, 1-31.
HOMO and HOMO−1 of Ag27 were superatomic orbitals that possessed p-like symmetry and dz2-like symmetry, respectively. The disk-like distorted shape of {Ag27} nanocluster likely caused the lower dz2-like orbital energy and higher p-like orbital energy, which resulted in the unique superatomic configuration with 10 valence electrons.
 
S. Yamazoe, T. Tsukuda, Bull. Chem. Soc. Jpn. 2019, 92, 193-204;
T. Omoda, S. Takano, S. Yamazoe, K. Koyasu, Y. Negishi, T. Tsukuda, J. Phys. Chem. C 2018, 122, 13199-13204.
The E0 values for Ag foil and AgNO3 were 25516.0 and 25518.5 eV, respectively.
In the presence of a catalytic amount of Ag27 (0.7 mol %) under H2 (1 atm), 4-nitrobenzonitrile was efficiently reduced by irradiation of visible light (λ>400 nm), selectively affording the corresponding azobenzene (Figure S13). In this case, byproducts such as the corresponding azoxybenzene and aniline were hardly detected. Since the reaction hardly proceeded in the absence of photo-irradiation or Ag27, it is clear that Ag27 functions as a visible-light-responsive photocatalyst. Although the reaction proceeded to some extent in the absence of H2, the fact that the reaction proceeded more efficiently in the presence of H2 is noteworthy. Hence, the nitroarene reduction is considered to be proceeded with H2 as the electron and proton sources. Based on the DFT studies and the above-mentioned experimental results, we consider that the key step for this reaction is the visible-light-induced electron transfer from {Ag27} nanocluster to the POM frameworks. The electrons stored in {Ag27} by the cleavage of H2 (or from other electron sources) were possibly transferred to the POM framework by photo-irradiation, which successfully reduced the nitroarene to form the corresponding azobenzene.

Auteurs

Kentaro Yonesato (K)

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Seiji Yamazoe (S)

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.

Daisuke Yokogawa (D)

Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.

Kazuya Yamaguchi (K)

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Kosuke Suzuki (K)

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.

Classifications MeSH