The synaptic blocker botulinum toxin A decreases the density and complexity of oligodendrocyte precursor cells in the adult mouse hippocampus.
BoNT/A
RRID:AB_11213678
RRID:AB_143165
RRID:AB_2313606
RRID:AB_2340613
RRID:SCR_002798
RRID:SCR_003070
RRID:SCR_016788
RRID:SCR_017348
SNAP-25
SNARE
Synapse
botulinum toxin A
hippocampus
mouse
oligodendrocyte progenitor cell
Journal
Journal of neuroscience research
ISSN: 1097-4547
Titre abrégé: J Neurosci Res
Pays: United States
ID NLM: 7600111
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
revised:
27
04
2021
received:
05
10
2020
accepted:
01
05
2021
pubmed:
30
5
2021
medline:
11
2
2022
entrez:
29
5
2021
Statut:
ppublish
Résumé
Oligodendrocyte progenitor cells (OPCs) are responsible for generating oligodendrocytes, the myelinating cells of the CNS. Life-long myelination is promoted by neuronal activity and is essential for neural network plasticity and learning. OPCs are known to contact synapses and it is proposed that neuronal synaptic activity in turn regulates their behavior. To examine this in the adult, we performed unilateral injection of the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of adult mice. We confirm BoNT/A cleaves SNAP-25 in the CA1 are of the hippocampus, which has been proven to block neurotransmission. Notably, BoNT/A significantly decreased OPC density and caused their shrinkage, as determined by immunolabeling for the OPC marker NG2. Furthermore, BoNT/A resulted in an overall decrease in the number of OPC processes, as well as a decrease in their lengths and branching frequency. These data indicate that synaptic activity is important for maintaining adult OPC numbers and cellular integrity, which is relevant to pathophysiological scenarios characterized by dysregulation of synaptic activity, such as age-related cognitive decline, Multiple Sclerosis and Alzheimer's disease.
Substances chimiques
Botulinum Toxins, Type A
EC 3.4.24.69
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2216-2227Subventions
Organisme : Medical Research Council
ID : MR/P024572/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P025811/1
Pays : United Kingdom
Organisme : MRC
ID : MR/P025811/1
Organisme : BBSRC
ID : BB/M029379/1
Informations de copyright
© 2021 The Authors. Journal of Neuroscience Research published by Wiley Periodicals LLC.
Références
Antonucci, F., Rossi, C., Gianfranceschi, L., Rossetto, O., & Caleo, M. (2008). Long-distance retrograde effects of botulinum neurotoxin A. Journal of Neuroscience, 28(14), 3689-3696. https://doi.org/10.1523/JNEUROSCI.0375-08.2008
Barres, B. A., & Raff, M. C. (1993). Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature, 361(6409), 258-260. https://doi.org/10.1038/361258a0
Bartzokis, G. (2004). Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer's disease. Neurobiology of Aging, 25(1), 5-18; author reply 49-62. https://doi.org/10.1016/j.neurobiolaging.2003.03.001
Bergles, D. E., Roberts, J. D. B., Somogyi, P., & Jahr, C. E. (2000). Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 405(6783), 187-191. https://doi.org/10.1038/35012083
Butt, A. M., & Dinsdale, J. (2005). Fibroblast growth factor 2 induces loss of adult oligodendrocytes and myelin in vivo. Experimental Neurology, 192(1), 125-133. https://doi.org/10.1016/j.expneurol.2004.11.007
Butt, A. M., Duncan, A., Hornby, M. F., Kirvell, S. L., Hunter, A., Levine, J. M., & Berry, M. (1999). Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia, 26(1), 84-91. https://doi.org/10.1002/(SICI)1098-1136(199903)26:1<84:AID-GLIA9>3.0.CO;2-L
Butt, A. M., Kiff, J., Hubbard, P., & Berry, M. (2002). Synantocytes: New functions for novel NG2 expressing glia. Journal of Neurocytology, 31(6/7), 551-565. http://dx.doi.org/10.1023/a:1025751900356
Caleo, M., & Restani, L. (2018). Exploiting botulinum neurotoxins for the study of brain physiology and pathology. Toxins, 10(5), 175. https://doi.org/10.3390/toxins10050175
Caleo, M., Restani, L., Vannini, E., Siskova, Z., Al-Malki, H., Morgan, R., O'Connor, V., & Perry, V. H. (2012). The role of activity in synaptic degeneration in a protein misfolding disease, prion disease. PLoS One, 7(7), e41182.
Chacon-De-La-Rocha, I., Fryatt, G., Rivera, A. D., Verkhratsky, A., Raineteau, O., Gomez-Nicola, D., & Butt, A. M. (2020). Accelerated dystrophy and decay of oligodendrocyte precursor cells in the APP/PS1 model of Alzheimer's-like pathology. Frontiers in Cellular Neuroscience, 14, 575082. https://doi.org/10.3389/fncel.2020.575082
Chen, T. J., Kula, B., Nagy, B., Barzan, R., Gall, A., Ehrlich, I., & Kukley, M. (2018). In vivo regulation of oligodendrocyte precursor cell proliferation and differentiation by the AMPA-receptor subunit GluA2. Cell Reports, 25(4), 852-861.e7. http://dx.doi.org/10.1016/j.celrep.2018.09.066
Dong, Y.-X., Zhang, H.-Y., Li, H.-Y., Liu, P.-H., Sui, Y. I., & Sun, X.-H. (2018). Association between Alzheimer's disease pathogenesis and early demyelination and oligodendrocyte dysfunction. Neural Regeneration Research, 13(5), 908-914. https://doi.org/10.4103/1673-5374.232486
Fannon, J., Tarmier, W., & Fulton, D. (2015). Neuronal activity and AMPA-type glutamate receptor activation regulates the morphological development of oligodendrocyte precursor cells. Glia, 63(6), 1021-1035. https://doi.org/10.1002/glia.22799
Feldmann, A., Winterstein, C., White, R., Trotter, J., & Krämer-Albers, E.-M. (2009). Comprehensive analysis of expression, subcellular localization, and cognate pairing of SNARE proteins in oligodendrocytes. Journal of Neuroscience Research, 87(8), 1760-1772. https://doi.org/10.1002/jnr.22020
Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, L. S., Inema, I., Miller, S. E., Bieri, G., Zuchero, J. B., Barres, B. A., Woo, P. J., Vogel, H., & Monje, M. (2014). Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science, 344(6183), 1252304. https://doi.org/10.1126/science.1252304
Hamilton, N. B., Clarke, L. E., Arancibia-Carcamo, I. L., Kougioumtzidou, E., Matthey, M., Káradóttir, R., Whiteley, L., Bergersen, L. H., Richardson, W. D., & Attwell, D. (2017). Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length. Glia, 65(2), 309-321. https://doi.org/10.1002/glia.23093
Hamilton, N., Vayro, S., Wigley, R., & Butt, A. M. (2010). Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia, 58(1), 66-79. https://doi.org/10.1002/glia.20902
Hepp, R., Perraut, M., Chasserot-Golaz, S., Galli, T., Aunis, D., Langley, K., & Grant, N. J. (1999). Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia, 27(2), 181-187. https://doi.org/10.1002/(SICI)1098-1136(199908)27:2<181:AID-GLIA8>3.0.CO;2-9
Hill, R. A., Li, A. M., & Grutzendler, J. (2018). Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nature Neuroscience, 21(5), 683-695. https://doi.org/10.1038/s41593-018-0120-6
Hughes, E. G., Kang, S. H., Fukaya, M., & Bergles, D. E. (2013). Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nature Neuroscience, 16(6), 668-676. https://doi.org/10.1038/nn.3390
Korrell, K. V., Disser, J., Parley, K., Vadisiute, A., Requena-Komuro, M.-C., Fodder, H., Pollart, C., Knott, G., Molnár, Z., & Hoerder-Suabedissen, A. (2019). Differential effect on myelination through abolition of activity-dependent synaptic vesicle release or reduction of overall electrical activity of selected cortical projections in the mouse. Journal of Anatomy, 235(3), 452-467. https://doi.org/10.1111/joa.12974
Kukley, M., Capetillo-Zarate, E., & Dietrich, D. (2007). Vesicular glutamate release from axons in white matter. Nature Neuroscience, 10(3), 311-320. https://doi.org/10.1038/nn1850
Kula, B., Chen, T. J., & Kukley, M. (2019). Glutamatergic signaling between neurons and oligodendrocyte lineage cells: Is it synaptic or non-synaptic? Glia, 67(11), 2071-2091. https://doi.org/10.1002/glia.23617
Levine, J. M., & Reynolds, R. (1999). Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Experimental Neurology, 160(2), 333-347. https://doi.org/10.1006/exnr.1999.7224
Levine, J. M., Reynolds, R., & Fawcett, J. W. (2001). The oligodendrocyte precursor cell in health and disease. Trends in Neurosciences, 24(1), 39-47. https://doi.org/10.1016/S0166-2236(00)01691-X
Li, W., Tang, Y., Fan, Z., Meng, Y. A., Yang, G., Luo, J., & Ke, Z.-J. (2013). Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Molecular Neurodegeneration, 8, 27. https://doi.org/10.1186/1750-1326-8-27
Lin, S. C., & Bergles, D. E. (2004). Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neuroscience, 7(1), 24-32. https://doi.org/10.1038/nn1162
Mangin, J.-M., Li, P., Scafidi, J., & Gallo, V. (2012). Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nature Neuroscience, 15(9), 1192-1194. https://doi.org/10.1038/nn.3190
McKenzie, I. A., Ohayon, D., Li, H., Paes de Faria, J., Emery, B., Tohyama, K., & Richardson, W. D. (2014). Motor skill learning requires active central myelination. Science, 346(6207), 318-322. https://doi.org/10.1126/science.1254960
Nasrabady, S. E., Rizvi, B., Goldman, J. E., & Brickman, A. M. (2018). White matter changes in Alzheimer's disease: A focus on myelin and oligodendrocytes. Acta Neuropathologica Communications, 6(1), 22. https://doi.org/10.1186/s40478-018-0515-3
Neumann, B., Baror, R., Zhao, C., Segel, M., Dietmann, S., Rawji, K., Foerster, S., McClain, C. R., Chalut, K., van Wijngaarden, P., & Franklin, R. J. M. (2019). Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell. 25(4), 473-485.e8. http://dx.doi.org/10.1016/j.stem.2019.08.015
Nielsen, H. M., Ek, D., Avdic, U., Orbjörn, C.; Hansson, O., Veerhuis, R., Rozemuller, A. J. M., Brun, A., Minthon, L., & Wennström, M. (2013). NG2 cells, a new trail for Alzheimer's disease mechanisms? Acta Neuropathologica Communications, 1(1), 7. https://doi.org/10.1186/2051-5960-1-7
Ong, W. Y., & Levine, J. M. (1999). A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate-lesioned rat hippocampus. Neuroscience, 92(1), 83-95. https://doi.org/10.1016/S0306-4522(98)00751-9
Reynolds, R., Dawson, M., Papadopoulos, D., Polito, A., Di Bello, I. C., Pham-Dinh, D., & Levine, J. (2002). The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. Journal of Neurocytology, 31(6-7), 523-536. https://doi.org/10.1023/A:1025747832215
Rietveld L., Stuss D. P., McPhee D., & Delaney K. R. (2015). Genotype-specific effects of Mecp2 loss-of-function on morphology of Layer V pyramidal neurons in heterozygous female Rett syndrome model mice. Frontiers in Cellular Neuroscience, 9. http://dx.doi.org/10.3389/fncel.2015.00145
Rivera, A. D., Pieropan, F., Chacon-De-La-Rocha, I., Lecca, D., Abbracchio, M. P., Azim, K., & Butt, A. M. (2021). Functional genomic analyses a shift in Gpr17-regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum. Aging Cell, 20(4), e13335. http://dx.doi.org/10.1111/acel.13335
Rivera, A., Vanzuli, I., Arellano, J. J., & Butt, A. (2016). Decreased regenerative capacity of oligodendrocyte progenitor cells (NG2-Glia) in the ageing brain: A vicious cycle of synaptic dysfunction, myelin loss and neuronal disruption? Current Alzheimer Research, 13(4), 413-418. https://doi.org/10.2174/1567205013666151116125518
Rojewska, E., Piotrowska, A., Popiolek-Barczyk, K., & Mika, J. (2018). Botulinum toxin type A-A modulator of spinal neuron-glia interactions under neuropathic pain conditions. Toxins, 10(4), 145. https://doi.org/10.3390/toxins10040145
Sanai, S. A., Saini, V., Benedict, R. H. B., Zivadinov, R., Teter, B. E., Ramanathan, M., & Weinstock-Guttman, B. (2016). Aging and multiple sclerosis. Multiple Sclerosis Journal, 22(6), 717-725. https://doi.org/10.1177/1352458516634871
Schardt, A., Brinkmann, B. G., Mitkovski, M., Sereda, M. W., Werner, H. B., & Nave, K. A. (2009). The SNARE protein SNAP-29 interacts with the GTPase Rab 3A: Implications for membrane trafficking in myelinating glia. Journal of Neuroscience Research, 87(15), 3465-3479. https://doi.org/10.1002/jnr.22005
Schiavo, G., & Montecucco, C. (1995). Tetanus and botulism neurotoxins: Isolation and assay. Methods in Enzymology, 248, 643-652. https://doi.org/10.1016/0076-6879(95)48041-2
Schubert, V., Bouvier, D., & Volterra, A. (2011). SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: A comparative analysis. Glia, 59(10), 1472-1488. https://doi.org/10.1002/glia.21190
Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87(4), 387-406.
Shone, C. C., & Tranter, H. S. (1995). Growth of clostridia and preparation of their neurotoxins. In C. Montecucco (Ed.), Clostridial Neurotoxins, Current Topics in Microbiology and Immunology (Vol. 195, pp. 143-160). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-85173-5_7
Sikorra, S., Litschko, C., Müller, C., Thiel, N., Galli, T., Eichner, T., & Binz, T. (2016). Identification and characterization of botulinum neurotoxin A substrate binding pockets and their re-engineering for human SNAP-23. Journal of Molecular Biology, 428(2 Pt A), 372-384. https://doi.org/10.1016/j.jmb.2015.10.024
Stallcup, W. B. (1981). The NG2 antigen, a putative lineage marker: Immunofluorescent localization in primary cultures of rat brain. Developmental Biology, 83(1), 154-165. https://doi.org/10.1016/S0012-1606(81)80018-8
Vanzulli, I., Papanikolaou, M., De-La-Rocha, I. C., Pieropan, F., Rivera, A. D., Gomez-Nicola, D., Verkhratsky, A., Rodríguez, J. J., & Butt, A. M. (2020). Disruption of oligodendrocyte progenitor cells is an early sign of pathology in the triple transgenic mouse model of Alzheimer's disease. Neurobiology of Aging, 94, 130-139. https://doi.org/10.1016/j.neurobiolaging.2020.05.016
Velez-Fort, M., Maldonado, P. P., Butt, A. M., Audinat, E., & Angulo, M. C. (2010). Postnatal switch from synaptic to extrasynaptic transmission between interneurons and NG2 cells. Journal of Neuroscience, 30(20), 6921-6929. https://doi.org/10.1523/JNEUROSCI.0238-10.2010
Verderio, C., Pozzi, D., Pravettoni, E., Inverardi, F., Schenk, U., Coco, S., Proux-Gillardeaux, V., Galli, T., Rossetto, O., Frassoni, C., & Matteoli, M. (2004). SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron, 41(4), 599-610. https://doi.org/10.1016/S0896-6273(04)00077-7
Verderio, C., Rossetto, O., Grumelli, C., Frassoni, C., Montecucco, C., & Matteoli, M. (2006). Entering neurons: Botulinum toxins and synaptic vesicle recycling. EMBO Reports, 7(10), 995-999. https://doi.org/10.1038/sj.embor.7400796
Wake, H., Lee, P. R., & Fields, R. D. (2011). Control of local protein synthesis and initial events in myelination by action potentials. Science, 333(6049), 1647-1651. https://doi.org/10.1126/science.1206998
Xiao, L., Ohayon, D., McKenzie, I. A., Sinclair-Wilson, A., Wright, J. L., Fudge, A. D., Emery, B., Li, H., & Richardson, W. D. (2016). Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nature Neuroscience, 19(9), 1210-1217. https://doi.org/10.1038/nn.4351
Young, K. M., Psachoulia, K., Tripathi, R. B., Dunn, S.-J., Cossell, L., Attwell, D., Tohyama, K., & Richardson, W. D. (2013). Oligodendrocyte dynamics in the healthy adult CNS: Evidence for myelin remodeling. Neuron, 77(5), 873-885. https://doi.org/10.1016/j.neuron.2013.01.006
Zawadzka, M., Rivers, L. E., Fancy, S. P. J., Zhao, C., Tripathi, R., Jamen, F., Young, K., Goncharevich, A., Pohl, H., Rizzi, M., Rowitch, D. H., Kessaris, N., Suter, U., Richardson, W. D., & Franklin, R. J. M. (2010). CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell, 6(6), 578-590. https://doi.org/10.1016/j.stem.2010.04.002
Zhang, P., Kishimoto, Y., Grammatikakis, I., Gottimukkala, K., Cutler, R. G., Zhang, S., Abdelmohsen, K., Bohr, V. A., Misra Sen, J., Gorospe, M., & Mattson, M. P. (2019). Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nature Neuroscience, 22(5), 719-728. https://doi.org/10.1038/s41593-019-0372-9
Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O'Keeffe, S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., Deng, S., Liddelow, S. A., Zhang, C., Daneman, R., Maniatis, T., Barres, B. A., & Wu, J. Q. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of Neuroscience, 34(36), 11929-11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014
Ziskin, J. L., Nishiyama, A., Rubio, M., Fukaya, M., & Bergles, D. E. (2007). Vesicular release of glutamate from unmyelinated axons in white matter. Nature Neuroscience, 10(3), 321-330. https://doi.org/10.1038/nn1854
Zonouzi, M., Scafidi, J., Li, P., McEllin, B., Edwards, J., Dupree, J. L., Harvey, L., Sun, D., Hübner, C. A., Cull-Candy, S. G., Farrant, M., & Gallo, V. (2015). GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nature Neuroscience, 18(5), 674-682. https://doi.org/10.1038/nn.3990