Pulmonary bioassay studies with brake lining components - Nonfibrous potassium octatitanate - Terracess JS particles in rats.


Journal

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association
ISSN: 1873-6351
Titre abrégé: Food Chem Toxicol
Pays: England
ID NLM: 8207483

Informations de publication

Date de publication:
Jul 2021
Historique:
received: 29 01 2021
revised: 16 05 2021
accepted: 19 05 2021
pubmed: 31 5 2021
medline: 5 10 2021
entrez: 30 5 2021
Statut: ppublish

Résumé

Nonfibrous potassium octatitanate particles are commercially utilized in applications such as brake pads or brake linings. The aim of this study was to assess lung toxicity in rats exposed to Terracess JS particle-types, one form of nonfibrous octatitanate particulates, and compare the effects to vehicle controls and to Min-U-Sil α-quartz particles as a positive benchmark control particle. Groups of male rats were intratracheally instilled with doses of either 1 or 5 mg/kg of Terracess JS particles or α-quartz particles in phosphate-buffered saline. Phosphate-buffered saline (PBS) solution instilled rats served as vehicle controls. Following exposures, the lungs of PBS and particle-exposed rats were evaluated for bronchoalveolar lavage (BAL) fluid inflammatory biomarkers at post-instillation time points of 1 week, 1 month, and 3 months. In addition, lung tissue morphologies from PBS or 5 mg/kg particle-exposed (Terracess JS or α-quartz) rats were evaluated at postexposure time points of 1 month and 3 months. The BAL fluid results demonstrated that pulmonary instillation exposures in rats to quartz particles produced sustained pulmonary inflammation and significant cytotoxic effects measured at 1 week, 1 month and 3 months postexposure. In contrast, exposures to Terracess JS particle-types produced no significant lung inflammatory or cell injury effects when compared to PBS vehicle control exposed rats. With regard to histopathology of lung tissue, pulmonary exposures to quartz particles in rats produced a progressive, dose-dependent lung inflammatory response characterized by neutrophils and foamy lipid-containing alveolar macrophage accumulation, as well as evidence of early lung tissue thickening consistent with the development of pulmonary fibrosis at the 3-month postexposure time period. In contrast, histopathological analyses of lung tissues revealed that pulmonary exposures to Terracess JS particulates resulted in no significant adverse effects when compared to PBS-exposed controls, as evidenced by the normal lung architecture observed in the exposed animals at post-instillation exposure time periods ranging from 1 month to 3 months. The results described herein demonstrate the benign nature of the pulmonary instillation response in rats following particle exposures to 1 or 5 mg/kg (approximately 1.25 mg) of Terracess JS particle-types in these pulmonary bioassay studies, using appropriate benchmark control particles for comparative evaluations. Thus, based on these results, it is concluded that inhaled Terracess JS particles are expected to have a low-risk potential for producing adverse pulmonary health effects in exposed workers.

Identifiants

pubmed: 34052359
pii: S0278-6915(21)00325-2
doi: 10.1016/j.fct.2021.112292
pii:
doi:

Substances chimiques

Particulate Matter 0
potassium octatitanate 59766-31-3
Titanium D1JT611TNE

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

112292

Informations de copyright

Copyright © 2021. Published by Elsevier Ltd.

Auteurs

David B Warheit (DB)

Warheit Scientific LLC, Wilmington, DE, USA. Electronic address: david.warheit@gmail.com.

Leonard S Levy (LS)

Cranfield University, Cranfield Bedfordshire UK.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH