Quantitative comparison of subcortical and ventricular volumetry derived from MPRAGE and MP2RAGE images using different brain morphometry software.


Journal

Magma (New York, N.Y.)
ISSN: 1352-8661
Titre abrégé: MAGMA
Pays: Germany
ID NLM: 9310752

Informations de publication

Date de publication:
Dec 2021
Historique:
received: 01 02 2021
accepted: 19 05 2021
revised: 07 05 2021
pubmed: 31 5 2021
medline: 12 11 2021
entrez: 30 5 2021
Statut: ppublish

Résumé

In brain volume assessment with MR imaging, it is of interest to know the effects of the pulse sequence and software used, to determine whether they provide equivalent data. The aim of this study was to compare cross-sectional volumes of subcortical and ventricular structures and their repeatability derived from MP2RAGE and MPRAGE images using MorphoBox, and FIRST or ALVIN. MPRAGE and MP2RAGE T1-weighted images were obtained from 24 healthy volunteers. Back-to-back scans were performed in 12 of them. Volumes, coefficients of variation, concordance, and correlations were determined. Significant differences were found for volumes derived from MorphoBox and FIRST. Ventricular volumes determined by MorphoBox and ALVIN were similar. Differences between volumes obtained using MPRAGE and MP2RAGE were significant for a few regions. Coefficients of variation, ranged from 0.2 to 9.1%, showed a significant inverse correlation with the mean volume. There was a correlation between volume measures, but agreement was rated as poor for most regions. MP2RAGE sequences and MorphoBox are valid options for assessing subcortical and ventricular volumes, in the same way as MPRAGE and FIRST or ALVIN, accepted tools for clinical research. However, caution is needed when comparing volumes obtained with different tools.

Identifiants

pubmed: 34052900
doi: 10.1007/s10334-021-00933-0
pii: 10.1007/s10334-021-00933-0
doi:

Types de publication

Comparative Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

903-914

Subventions

Organisme : Retos de Investigación
ID : DPI2017-86696-R

Informations de copyright

© 2021. European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).

Références

Hedderich DM, Dieckmeyer M, Andrisan T, Ortner M, Grundl L, Schon S et al (2020) Normative brain volume reports may improve differential diagnosis of dementing neurodegenerative diseases in clinical practice. Eur Radiol 30:2821–2829
doi: 10.1007/s00330-019-06602-0
Bisenius S, Neumann J, Schroeter ML (2016) Validating new diagnostic imaging criteria for primary progressive aphasia via anatomical likelihood estimation meta-analyses. Eur J Neurol 23:704–712
doi: 10.1111/ene.12902
Gonzalez-Villa S, Oliver A, Valverde S, Wang LP, Zwiggelaar R, Llado X (2016) A review on brain structures segmentation in magnetic resonance imaging. Artif Intell Med 73:45–69
doi: 10.1016/j.artmed.2016.09.001
Giorgio A, De Stefano N (2013) Clinical use of brain volumetry. J Magn Reson Imaging 37:1–14
doi: 10.1002/jmri.23671
Morey RA, Petty CM, Xu Y, Hayes JP, Wagner HR, Lewis DV et al (2009) A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 45:855–866
doi: 10.1016/j.neuroimage.2008.12.033
Brewer JB (2009) Fully-automated volumetric MRI with normative ranges: translation to clinical practice. Behav Neurol 21:21–28
doi: 10.1155/2009/616581
Jang J, Park SY, Park YH, Baek MJ, Lim J, Youn YC et al (2015) A comprehensive visual rating scale of brain magnetic resonance imaging: application in elderly subjects with alzheimer’s disease, mild cognitive impairment, and normal cognition. J Alzheimers Dis 44:1023–1034
doi: 10.3233/JAD-142088
Farrell C, Chappell F, Armitage PA, Keston P, Maclullich A, Shenkin S et al (2009) Development and initial testing of normal reference MR images for the brain at ages 65–70 and 75–80 years. Eur Radiol 19:177–183
doi: 10.1007/s00330-008-1119-2
Kempton MJ, Underwood TSA, Brunton S, Stylios F, Schmechtig A, Ettinger U et al (2011) A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: evaluation of a novel lateral ventricle segmentation method. Neuroimage 58:1051–1059
doi: 10.1016/j.neuroimage.2011.06.080
Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922
doi: 10.1016/j.neuroimage.2011.02.046
Boto J, Gkinis G, Roche A, Kober T, Marechal B, Ortiz N et al (2017) Evaluating anorexia-related brain atrophy using MP2RAGE-based morphometry. Eur Radiol 27:5064–5072
doi: 10.1007/s00330-017-4914-9
Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M et al (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and alzheimer’s disease. Neuroimage Clin 7:7–17
doi: 10.1016/j.nicl.2014.11.001
Mugler III JP, Epstein FH, Brookeman JR (1992) Shaping the signal response during the approach to steady state in three-dimensional magnetization-prepared rapid gradient-echo imaging using variable flip angles. Magn Reson Med 28:165–171
doi: 10.1002/mrm.1910280202
Marques J, Kober T, Krueger G, van der Zwaag W, Van de Moortele P, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49:1271–1281
doi: 10.1016/j.neuroimage.2009.10.002
O’Brien KR, Kober T, Hagmann P, Maeder P, Marques J, Lazeyras F et al (2014) Robust T1-weighted structural brain imaging and morphometry at 7T using MP2RAGE. PLoS ONE 9:e99676
doi: 10.1371/journal.pone.0099676
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219
doi: 10.1016/j.neuroimage.2004.07.051
Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851
doi: 10.1016/j.neuroimage.2005.02.018
Lin LI (1989) A concordance correlation-coefficient to evaluate reproducibility. Biometrics 45:255–268
doi: 10.2307/2532051
McBride GB (2005) A proposal for strength-of-agreement criteria for lin's concordance correlation coefficient. NIWA Client Report: HAM2005–062
Nugent AC, Luckenbaugh DA, Wood SE, Bogers W, Zarate CAJ, Drevets WC (2013) Automated subcortical segmentation using first: test-retest reliability, interscanner reliability, and comparison to manual segmentation. Hum Brain Mapp 34:2313–2329
doi: 10.1002/hbm.22068
Guadalupe T, Zwiers MP, Teumer A, Wittfeld K, Vasquez AA, Hoogman M et al (2014) Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Hum Brain Mapp 35:3277–3289
doi: 10.1002/hbm.22401
Wonderlick JS, Ziegler DA, Hosseini-Varnamkhasti P, Locascio JJ, Bakkour A, Van der Kouwe A et al (2009) Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging. Neuroimage 44:1324–1333
doi: 10.1016/j.neuroimage.2008.10.037
Maclaren J, Han Z, Vos SB, Fischbein N, Bammer R (2014) Reliability of brain volume measurements: a test-retest dataset. Sci Data 1:140037
doi: 10.1038/sdata.2014.37
Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IAL, Farrell JAD et al (2011) Multi-parametric neuroimaging reproducibility: a 3-T resource study. Neuroimage 54:2854–2866
doi: 10.1016/j.neuroimage.2010.11.047
Morey RA, Selgrade ES, Wagner HR, Huettel SA, Wang LH, McCarthy G (2010) Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Hum Brain Mapp 31:1751–1762
pubmed: 20162602 pmcid: 3782252
Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B et al (2009) MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 46:177–192
doi: 10.1016/j.neuroimage.2009.02.010
Yan S, Qian T, Marechal B, Kober T, Zhang X, Zhu J et al (2020) Test-retest variability of brain morphometry analysis: an investigation of sequence and coil effects. Ann Transl Med 8:12
doi: 10.21037/atm.2019.11.149
Wenzel F, Meyer C, Stehle T, Peters J, Siemonsen S, Thaler C et al (2018) Rapid fully automatic segmentation of subcortical brain structures by shape-constrained surface adaptation. Med Image Anal 46:146–161
doi: 10.1016/j.media.2018.03.001
Dwyer MG, Silva D, Bergsland N, Horakova D, Ramasamy D, Durfee J et al (2017) Neurological software tool for reliable atrophy measurement (neuroSTREAM) of the lateral ventricles on clinical-quality T2-FLAIR MRI scans in multiple sclerosis. Neuroimage Clin 15:769–779
doi: 10.1016/j.nicl.2017.06.022
Jovicich J, Marizzoni M, Sala-Llonch R, Bosch B, Bartres-Faz D, Arnold J et al (2013) Brain morphometry reproducibility in multi-center 3-T MRI studies: a comparison of cross-sectional and longitudinal segmentations. Neuroimage 83:472–484
doi: 10.1016/j.neuroimage.2013.05.007

Auteurs

Juli Alonso (J)

Neuroradiology Section, Department of Radiology (Institut de Diagnòstic per la Imatge), Vall d'Hebron Hospital Universitari, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain. juli.alonso.idi@gencat.cat.
Neuroradiology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain. juli.alonso.idi@gencat.cat.
Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. juli.alonso.idi@gencat.cat.

Deborah Pareto (D)

Neuroradiology Section, Department of Radiology (Institut de Diagnòstic per la Imatge), Vall d'Hebron Hospital Universitari, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain.
Neuroradiology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain.
Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

Manel Alberich (M)

Neuroradiology Section, Department of Radiology (Institut de Diagnòstic per la Imatge), Vall d'Hebron Hospital Universitari, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain.
Neuroradiology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain.

Tobias Kober (T)

Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.
Department of Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Bénédicte Maréchal (B)

Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.
Department of Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Xavier Lladó (X)

Department of Computer Architecture and Technology, University of Girona, Girona, Spain.

Alex Rovira (A)

Neuroradiology Section, Department of Radiology (Institut de Diagnòstic per la Imatge), Vall d'Hebron Hospital Universitari, Pg Vall d'Hebron 119-129, 08035, Barcelona, Spain.
Neuroradiology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain.
Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH