Obesity and cholangiocarcinoma: A review of epidemiological and molecular associations.


Journal

Journal of hepato-biliary-pancreatic sciences
ISSN: 1868-6982
Titre abrégé: J Hepatobiliary Pancreat Sci
Pays: Japan
ID NLM: 101528587

Informations de publication

Date de publication:
Dec 2021
Historique:
revised: 02 05 2021
received: 06 04 2021
accepted: 19 05 2021
pubmed: 31 5 2021
medline: 29 12 2021
entrez: 30 5 2021
Statut: ppublish

Résumé

Cholangiocarcinoma (CCA) is a malignancy of bile duct epithelium, and its incidence is increasing globally. Numerous factors are reported associated with an increased risk of CCA and vary among populations across different areas. Obesity is a major, worldwide public health problem that leads to several complications and is associated with increased cancer risk. Although several epidemiological studies have shown that obesity is likely associated with the increased risk of CCA, this association might be limited to Western countries. Multiple hormones, cytokines, and metabolite perturbations in obese states have been shown to enhance tumorigenicity and metastasis potentials. Understanding the biological linkage of obesity to CCA might lead to novel prevention and therapeutic approaches to CCA treatment. This review summarizes the current evidence and highlights the knowledge gaps regarding the relationship between obesity and CCA from epidemiological and molecular perspectives.

Identifiants

pubmed: 34053180
doi: 10.1002/jhbp.1001
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1047-1059

Subventions

Organisme : Faculty of Medicine, Khon Kaen University, Thailand

Informations de copyright

© 2021 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

Références

Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17:557-88. https://doi.org/10.1038/s41575-020-0310-z
Florio AA, Ferlay J, Znaor A, Ruggieri D, Alvarez CS, Laversanne M, et al. Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012. Cancer. 2020;126:2666-78. https://doi.org/10.1002/cncr.32803
Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15:95-111. https://doi.org/10.1038/nrclinonc.2017.157
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261-80. https://doi.org/10.1038/nrgastro.2016.51
Brindley PJ, da Costa JM, Sripa B. Why does infection with some helminths cause cancer? Trends Cancer. 2015;1:174-82. https://doi.org/10.1016/j.trecan.2015.08.011
Clements O, Eliahoo J, Kim JU, Taylor-Robinson SD, Khan SA. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J Hepatol. 2020;72:95-103. https://doi.org/10.1016/j.jhep.2019.09.007
Kamsa-ard S, Kamsa-ard S, Luvira V, Suwanrungruang K, Vatanasapt P, Wiangnon S. Risk factors for cholangiocarcinoma in Thailand: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2018;19:605-14. https://doi.org/10.22034/apjcp.2018.19.3.605
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288-98. https://doi.org/10.1038/s41574-019-0176-8
Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol. 2012;57:69-76. https://doi.org/10.1016/j.jhep.2012.02.022
Saengboonmee C, Seubwai W, Lert-Itthiporn W, Sanlung T, Wongkham S. Association of diabetes mellitus and cholangiocarcinoma: update of evidence and the effects of antidiabetic medication. Can J Diabetes. 2021;45(3):282-90. https://doi.org/10.1016/j.jcjd.2020.09.008
Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body fatness and cancer-viewpoint of the IARC Working Group. N Engl J Med. 2016;375:794-8. https://doi.org/10.1056/NEJMsr1606602
Petrick JL, Thistle JE, Zeleniuch-Jacquotte A, Zhang X, Wactawski-Wende J, Van Dyke AL, et al. Body mass index, diabetes and intrahepatic cholangiocarcinoma risk: The Liver Cancer Pooling Project and Meta-analysis. Am J Gastroenterol. 2018;113:1494-505. https://doi.org/10.1038/s41395-018-0207-4
Li JS, Han TJ, Jing N, Li L, Zhang XH, Ma FZ, et al. Obesity and the risk of cholangiocarcinoma: a meta-analysis. Tumour Biol. 2014;35:6831-8. https://doi.org/10.1007/s13277-014-1939-4
Menon S, Mathew R. Association between metabolic syndrome and hepatobiliary cancers: a case-control study. Indian J Gastroenterol. 2019;38:61-8. https://doi.org/10.1007/s12664-018-0925-y
Petrick JL, Yang B, Altekruse SF, Van Dyke AL, Koshiol J, Graubard BI, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-Medicare. PLoS One. 2017;12:e0186643. https://doi.org/10.1371/journal.pone.0186643
Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA. Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare database. Hepatology. 2011;54:463-71. https://doi.org/10.1002/hep.24397
Welzel TM, Mellemkjaer L, Gloria G, Sakoda LC, Hsing AW, El Ghormli L, et al. Risk factors for intrahepatic cholangiocarcinoma in a low-risk population: a nationwide case-control study. Int J Cancer. 2007;120:638-41. https://doi.org/10.1002/ijc.22283
Welzel TM, Graubard BI, El-Serag HB, Shaib YH, Hsing AW, Davila JA, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case-control study. Clin Gastroenterol Hepatol. 2007;5:1221-8. https://doi.org/10.1016/j.cgh.2007.05.020
Wolk A, Gridley G, Svensson M, Nyrén O, McLaughlin JK, Fraumeni JF, et al. A prospective study of obesity and cancer risk (Sweden). Cancer Causes Control. 2001;12:13-21. https://doi.org/10.1023/a:1008995217664
Samanic C, Gridley G, Chow WH, Lubin J, Hoover RN, Fraumeni JF Jr. Obesity and cancer risk among white and black United States veterans. Cancer Causes Control. 2004;15:35-43. https://doi.org/10.1023/B:CACO.0000016573.79453.ba
Samanic C, Chow WH, Gridley G, Jarvholm B, Fraumeni JF Jr. Relation of body mass index to cancer risk in 362,552 Swedish men. Cancer Causes Control. 2006;17:901-9. https://doi.org/10.1007/s10552-006-0023-9
Ishiguro S, Inoue M, Kurahashi N, Iwasaki M, Sasazuki S, Tsugane S. Risk factors of biliary tract cancer in a large-scale population-based cohort study in Japan (JPHC study); with special focus on cholelithiasis, body mass index, and their effect modification. Cancer Causes Control. 2008;19:33-41. https://doi.org/10.1007/s10552-007-9067-8
Grainge MJ, West J, Solaymani-Dodaran M, Aithal GP, Card TR. The antecedents of biliary cancer: a primary care case-control study in the United Kingdom. Br J Cancer. 2009;100:178-80. https://doi.org/10.1038/sj.bjc.6604765
Yang B, Petrick JL, Kelly SP, Graubard BI, Freedman ND, McGlynn KA. Adiposity across the adult life course and incidence of primary liver cancer: The NIH-AARP cohort. Int J Cancer. 2017;141:271-8. https://doi.org/10.1002/ijc.30737
Choi J, Ghoz HM, Peeraphatdit T, Baichoo E, Addissie BD, Harmsen WS, et al. Aspirin use and the risk of cholangiocarcinoma. Hepatology. 2016;64:785-96. https://doi.org/10.1002/hep.28529
Chaiteerakij R, Yang JD, Harmsen WS, Slettedahl SW, Mettler TA, Fredericksen ZS, et al. Risk factors for intrahepatic cholangiocarcinoma: association between metformin use and reduced cancer risk. Hepatology. 2013;57:648-55. https://doi.org/10.1002/hep.26092
Chow WH, McLaughlin JK, Menck HR, Mack TM. Risk factors for extrahepatic bile duct cancers: Los Angeles County, California (USA). Cancer Causes Control. 1994;5:267-72. https://doi.org/10.1007/bf01830247
Oh SW, Yoon YS, Shin SA. Effects of excess weight on cancer incidences depending on cancer sites and histologic findings among men: Korea National Health Insurance Corporation Study. J Clin Oncol. 2005;23:4742-54. https://doi.org/10.1200/jco.2005.11.726
Lee BS, Cha BH, Park EC, Roh J. Risk factors for perihilar cholangiocarcinoma: a hospital-based case-control study. Liver Int. 2015;35:1048-53. https://doi.org/10.1111/liv.12618
Lee BS, Park EC, Park SW, Nam CM, Roh J. Hepatitis B virus infection, diabetes mellitus, and their synergism for cholangiocarcinoma development: a case-control study in Korea. World J Gastroenterol. 2015;21:502-10. https://doi.org/10.3748/wjg.v21.i2.502
Kinoshita M, Kubo S, Tanaka S, Takemura S, Nishioka T, Hamano G, et al. The association between non-alcoholic steatohepatitis and intrahepatic cholangiocarcinoma: A hospital based case-control study. J Surg Oncol. 2016;113:779-83. https://doi.org/10.1002/jso.24223
Xiong J, Lu X, Xu W, Bai Y, Huang H, Bian J, et al. Metabolic syndrome and the risk of cholangiocarcinoma: a hospital-based case-control study in China. Cancer Manag Res. 2018;10:3849-55. https://doi.org/10.2147/cmar.S175628
Ong CK, Subimerb C, Pairojkul C, Wongkham S, Cutcutache I, Yu W, et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet. 2012;44:690-3. https://doi.org/10.1038/ng.2273
Chan-On W, Nairismägi ML, Ong CK, Lim WK, Dima S, Pairojkul C, et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet. 2013;45:1474-8. https://doi.org/10.1038/ng.2806
Jinawath N, Chamgramol Y, Furukawa Y, Obama K, Tsunoda T, Sripa B, et al. Comparison of gene expression profiles between Opisthorchis viverrini and non-Opisthorchis viverrini associated human intrahepatic cholangiocarcinoma. Hepatology. 2006;44:1025-38. https://doi.org/10.1002/hep.21330
Seika P, Klein F, Pelzer U, Pratschke J, Bahra M, Malinka T. Influence of the body mass index on postoperative outcome and long-term survival after pancreatic resections in patients with underlying malignancy. Hepatobiliary Surg Nutr. 2019;8:201-10. https://doi.org/10.21037/hbsn.2019.02.05
Okumura S, Kaido T, Hamaguchi Y, Kobayashi A, Shirai H, Fujimoto Y, et al. Impact of skeletal muscle mass, muscle quality, and visceral adiposity on outcomes following resection of intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2017;24:1037-45. https://doi.org/10.1245/s10434-016-5668-3
Merath K, Mehta R, Hyer JM, Bagante F, Sahara K, Alexandrescu S, et al. Impact of body mass index on tumor recurrence among patients undergoing curative-intent resection of intrahepatic cholangiocarcinoma- a multi-institutional international analysis. Eur J Surg Oncol. 2019;45:1084-91. https://doi.org/10.1016/j.ejso.2019.03.004
Renehan AG, Zwahlen M, Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer. 2015;15:484-98. https://doi.org/10.1038/nrc3967
Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657-69. https://doi.org/10.1016/j.cell.2016.12.039
Quail DF, Dannenberg AJ. The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol. 2019;15:139-54. https://doi.org/10.1038/s41574-018-0126-x
Saitta C, Pollicino T, Raimondo G. Obesity and liver cancer. Ann Hepatol. 2019;18:810-5. https://doi.org/10.1016/j.aohep.2019.07.004
Alvaro D, Barbaro B, Franchitto A, Onori P, Glaser SS, Alpini G, et al. Estrogens and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am J Pathol. 2006;169:877-88. https://doi.org/10.2353/ajpath.2006.050464
Sampson LK, Vickers SM, Ying W, Phillips JO. Tamoxifen-mediated growth inhibition of human cholangiocarcinoma. Cancer Res. 1997;57:1743-9.
Alvaro D, Alpini G, Onori P, Perego L, Svegliata Baroni G, Franchitto A, et al. Estrogens stimulate proliferation of intrahepatic biliary epithelium in rats. Gastroenterology. 2000;119:1681-91. https://doi.org/10.1053/gast.2000.20184
Isse K, Specht SM, Lunz JG 3rd, Kang LI, Mizuguchi Y, Demetris AJ. Estrogen stimulates female biliary epithelial cell interleukin-6 expression in mice and humans. Hepatology. 2010;51:869-80. https://doi.org/10.1002/hep.23386
Mancino A, Mancino MG, Glaser SS, Alpini G, Bolognese A, Izzo L, et al. Estrogens stimulate the proliferation of human cholangiocarcinoma by inducing the expression and secretion of vascular endothelial growth factor. Dig Liver Dis. 2009;41:156-63. https://doi.org/10.1016/j.dld.2008.02.015
Petrick JL, McMenamin Ú, Zhang X, Zeleniuch-Jacquotte A, Wactawski-Wende J, Simon TG, et al. Exogenous hormone use, reproductive factors and risk of intrahepatic cholangiocarcinoma among women: results from cohort studies in the Liver Cancer Pooling Project and the UK Biobank. Br J Cancer. 2020;123:316-24. https://doi.org/10.1038/s41416-020-0835-5
Petrick JL, Florio AA, Zhang X, Zeleniuch-Jacquotte A, Wactawski-Wende J, Van Den Eeden SK, et al. Associations between prediagnostic concentrations of circulating sex steroid hormones and liver cancer among postmenopausal women. Hepatology. 2020;72:535-47. https://doi.org/10.1002/hep.31057
Fan ZJ, Wu Y, Wang ZJ. [Expression of estrogen receptor and progesterone receptor in hilar cholangiocarcinoma and their clinical significances] Zhonghua Yi Xue Za Zhi. 2005;85:2651-3.
Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13:633-43. https://doi.org/10.1038/nrendo.2017.90
Chouchani ET, Kajimura S. Metabolic adaptation and maladaptation in adipose tissue. Nat Metab. 2019;1:189-200. https://doi.org/10.1038/s42255-018-0021-8
Lengyel E, Makowski L, DiGiovanni J, Kolonin MG. Cancer as a matter of fat: The crosstalk between adipose tissue and tumors. Trends Cancer. 2018;4:374-84. https://doi.org/10.1016/j.trecan.2018.03.004
Olson OC, Quail DF, Joyce JA. Obesity and the tumor microenvironment. Science. 2017;358:1130-1. https://doi.org/10.1126/science.aao5801
Gao Y, Chen X, He Q, Gimple RC, Liao Y, Wang L, et al. Adipocytes promote breast tumorigenesis through TAZ-dependent secretion of resistin. Proc Natl Acad Sci U S A. 2020;117:33295-304. https://doi.org/10.1073/pnas.2005950117
Zhang J, Guo S, Li J, Bao W, Zhang P, Huang Y, et al. Effects of high-fat diet-induced adipokines and cytokines on colorectal cancer development. FEBS Open Bio. 2019;9:2117-25. https://doi.org/10.1002/2211-5463.12751
Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab. 2019;1:754-64. https://doi.org/10.1038/s42255-019-0095-y
Fava G, Alpini G, Rychlicki C, Saccomanno S, DeMorrow S, Trozzi L, et al. Leptin enhances cholangiocarcinoma cell growth. Cancer Res. 2008;68:6752-61. https://doi.org/10.1158/0008-5472.Can-07-6682
Izzo P, Izzo S, Di cello P, D'amata G, Cardi M, Polistena A, et al. Role of leptin in neoplastic and biliary tree disease. Vivo. 2020;34:2485-90. https://doi.org/10.21873/invivo.12064
Peng C, Sun Z, Li O, Guo C, Yi W, Tan Z, et al. Leptin stimulates the epithelial-mesenchymal transition and pro-angiogenic capability of cholangiocarcinoma cells through the miR-122/PKM2 axis. Int J Oncol. 2019;55:298-308. https://doi.org/10.3892/ijo.2019.4807
Philp LK, Rockstroh A, Lehman M, Sadowski MC, Bartonicek N, Wade JD, et al. Adiponectin receptor activation inhibits prostate cancer xenograft growth. Endocr Relat Cancer. 2020;27:711-29. https://doi.org/10.1530/erc-20-0297
Raut PK, Park PH. Globular adiponectin antagonizes leptin-induced growth of cancer cells by modulating inflammasomes activation: Critical role of HO-1 signaling. Biochem Pharmacol. 2020;180: https://doi.org/10.1016/j.bcp.2020.114186. 114186
Chou SH, Tseleni-Balafouta S, Moon HS, Chamberland JP, Liu X, Kavantzas N, et al. Adiponectin receptor expression in human malignant tissues. Horm Cancer. 2010;1:136-45. https://doi.org/10.1007/s12672-010-0017-7
Zhang L, Yuan Q, Li M, Chai D, Deng W, Wang W. The association of leptin and adiponectin with hepatocellular carcinoma risk and prognosis: a combination of traditional, survival, and dose-response meta-analysis. BMC Cancer. 2020;20:1167. https://doi.org/10.1186/s12885-020-07651-1
Polito R, Nigro E, Fei L, De magistris L, Monaco ML, D'amico R, et al. Adiponectin is inversely associated with tumour grade in colorectal cancer patients. Anticancer Res. 2020;40:3751-7. https://doi.org/10.21873/anticanres.14364
Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, et al. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014;2014:658913. https://doi.org/10.1155/2014/658913
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-74. https://doi.org/10.1016/j.cell.2011.02.013
Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, and Cancer. Annu Rev Pathol. 2016;11:421-49. https://doi.org/10.1146/annurev-pathol-012615-044359
Saengboonmee C, Phoomak C, Supabphol S, Covington KR, Hampton O, Wongkham C, et al. NF-κB and STAT3 co-operation enhances high glucose induced aggressiveness of cholangiocarcinoma cells. Life Sci. 2020;262:118548. https://doi.org/10.1016/j.lfs.2020.118548
Sripa B, Thinkhamrop B, Mairiang E, Laha T, Kaewkes S, Sithithaworn P, et al. Elevated plasma IL-6 associates with increased risk of advanced fibrosis and cholangiocarcinoma in individuals infected by Opisthorchis viverrini. PLoS Negl Trop Dis. 2012;6:e1654. https://doi.org/10.1371/journal.pntd.0001654
Techasen A, Namwat N, Loilome W, Duangkumpha K, Puapairoj A, Saya H, et al. Tumor necrosis factor-α modulates epithelial mesenchymal transition mediators ZEB2 and S100A4 to promote cholangiocarcinoma progression. J Hepatobiliary Pancreat Sci. 2014;21:703-11. https://doi.org/10.1002/jhbp.125
Nie J, Zhang J, Wang L, Lu L, Yuan Q, An F, et al. Adipocytes promote cholangiocarcinoma metastasis through fatty acid binding protein 4. J Exp Clin Cancer Res. 2017;36:183. https://doi.org/10.1186/s13046-017-0641-y
Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2013;9:346-56. https://doi.org/10.1038/nrendo.2013.64
Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517:302-10. https://doi.org/10.1038/nature14190
Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85-96. https://doi.org/10.1038/nrm1837
Hopkins BD, Goncalves MD, Cantley LC. Insulin-PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nat Rev Endocrinol. 2020;16:276-83. https://doi.org/10.1038/s41574-020-0329-9
Xu L, Hausmann M, Dietmaier W, Kellermeier S, Pesch T, Stieber-Gunckel M, et al. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines. BMC Cancer. 2010;10:302. https://doi.org/10.1186/1471-2407-10-302
Abdel-Razik A, ElMahdy Y, Hanafy EE, Elhelaly R, Elzehery R, M. Tawfik A, et al. Insulin-like growth factor-1 and vascular endothelial growth factor in malignant and benign biliary obstructions. Am J Med Sci. 2016;351:259-64. https://doi.org/10.1016/j.amjms.2015.12.013
Ohashi H, Adachi Y, Yamamoto H, Taniguchi H, Nosho K, Suzuki H, et al. Insulin-like growth factor receptor expression is associated with aggressive phenotypes and has therapeutic activity in biliary tract cancers. Cancer Sci. 2012;103:252-61. https://doi.org/10.1111/j.1349-7006.2011.02138.x
Vaquero J, Lobe C, Tahraoui S, Clapéron A, Mergey M, Merabtene F, et al. The IGF2/IR/IGF1R pathway in tumor cells and myofibroblasts mediates resistance to EGFR inhibition in cholangiocarcinoma. Clin Cancer Res. 2018;24:4282-96. https://doi.org/10.1158/1078-0432.Ccr-17-3725
Yue C, Yang M, Tian Q, Mo F, Peng J, Ma Y, et al. IGFBP7 is associated to prognosis and could suppress cell survival in cholangiocarcinoma. Artif Cells Nanomed Biotechnol. 2018;46:817-25. https://doi.org/10.1080/21691401.2018.1470524
Michelini E, Lonardo A, Ballestri S, Costantini M, Caporali C, Bonati ME, et al. Is cholangiocarcinoma another complication of insulin resistance: a report of three cases. Metab Syndr Relat Disord. 2007;5:194-202. https://doi.org/10.1089/met.2006.0018
Costa DB, Chen AA, Marginean EC, Inzucchi SE. Diabetes mellitus as the presenting feature of extrahepatic cholangiocarcinoma in situ: case report and review of literature. Endocr Pract. 2004;10:417-23. https://doi.org/10.4158/ep.10.5.417
Saengboonmee C, Seubwai W, Wongkham C, Wongkham S. Diabetes mellitus: possible risk and promoting factors of cholangiocarcinoma: Association of Diabetes Mellitus and Cholangiocarcinoma. Cancer Epidemiol. 2015;39:274-8. https://doi.org/10.1016/j.canep.2015.04.002
Jing W, Jin G, Zhou X, Zhou Y, Zhang Y, Shao C, et al. Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis. Eur J Cancer Prev. 2012;21:24-31. https://doi.org/10.1097/CEJ.0b013e3283481d89
Wu JW, Filion KB, Azoulay L, Doll MK, Suissa S. Effect of Long-Acting Insulin analogs on the risk of cancer: a systematic review of observational studies. Diabetes Care. 2016;39:486-94. https://doi.org/10.2337/dc15-1816
Corti F, Nichetti F, Raimondi A, Niger M, Prinzi N, Torchio M, et al. Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: a review of current evidences and future perspectives. Cancer Treat Rev. 2019;72:45-55. https://doi.org/10.1016/j.ctrv.2018.11.001
Hopkins BD, Pauli C, Du X, Wang DG, Li X, Wu D, et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature. 2018;560:499-503. https://doi.org/10.1038/s41586-018-0343-4
De Lorenzo S, Tovoli F, Mazzotta A, Vasuri F, Edeline J, Malvi D, et al. Non-alcoholic steatohepatitis as a risk factor for intrahepatic cholangiocarcinoma and its prognostic role. Cancers (Basel). 2020;12:3182. https://doi.org/10.3390/cancers12113182
Wongjarupong N, Assavapongpaiboon B, Susantitaphong P, Cheungpasitporn W, Treeprasertsuk S, Rerknimitr R, et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol. 2017;17:149. https://doi.org/10.1186/s12876-017-0696-4
Pastore M, Lori G, Gentilini A, Taddei ML, Di Maira G, Campani C, et al. Multifaceted aspects of metabolic plasticity in human cholangiocarcinoma: an overview of current perspectives. Cells. 2020;9(3):596. https://doi.org/10.3390/cells9030596
Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, Gassaway BM, et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell. 2020;183:1848-66.e26. https://doi.org/10.1016/j.cell.2020.11.009
Scharping NE, Delgoffe GM. Tumor microenvironment metabolism: a new checkpoint for anti-tumor immunity. Vaccines (Basel). 2016;4(4):46 https://doi.org/10.3390/vaccines4040046
Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A, et al. Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 2017;32:377-91.e9. https://doi.org/10.1016/j.ccell.2017.08.004
Guzman-Prado Y, Ben Shimol J, Samson O. Body mass index and immune-related adverse events in patients on immune checkpoint inhibitor therapies: a systematic review and meta-analysis. Cancer Immunol Immunother. 2021;70:89-100. https://doi.org/10.1007/s00262-020-02663-z
Høgdall D, Lewinska M, Andersen JB. Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer. 2018;4:239-55. https://doi.org/10.1016/j.trecan.2018.01.007
Phanthaphol N, Somboonpatarakun C, Suwanchiwasiri K, Chieochansin T, Sujjitjoon J, Wongkham S, et al. Chimeric antigen receptor T cells targeting integrin αvβ6 expressed on cholangiocarcinoma cells. Front Oncol. 2021;11:doi:10.3389/fonc.2021.657868.
Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25:377-88. https://doi.org/10.1038/s41591-019-0377-7
Plieskatt JL, Deenonpoe R, Mulvenna JP, Krause L, Sripa B, Bethony JM, et al. Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome. FASEB J. 2013;27:4572-84. https://doi.org/10.1096/fj.13-232751
Jia X, Lu S, Zeng Z, Liu Q, Dong Z, Chen Y, et al. Characterization of gut microbiota, bile acid metabolism, and cytokines in intrahepatic cholangiocarcinoma. Hepatology. 2020;71:893-906. https://doi.org/10.1002/hep.30852

Auteurs

Soravis Osataphan (S)

Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA.

Treerat Mahankasuwan (T)

Khu Muang Hospital, Khu Muang, Buriram, Thailand.

Charupong Saengboonmee (C)

Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH