Molecular Dockings and Molecular Dynamics Simulations Reveal the Potency of Different Inhibitors against Xanthine Oxidase.


Journal

ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658

Informations de publication

Date de publication:
04 May 2021
Historique:
received: 22 02 2021
accepted: 08 04 2021
entrez: 31 5 2021
pubmed: 1 6 2021
medline: 1 6 2021
Statut: epublish

Résumé

Xanthine oxidase (XO), which can catalyze the formation of xanthine or hypoxanthine to uric acid, is the most important target of gout. To explore the conformational changes for inhibitor binding, molecular dockings and molecular dynamics simulations were performed. Docking results indicated that three inhibitors had similar pose binding to XO. Molecular dynamics simulations showed that the binding of three inhibitors influenced the secondary structure changes in XO. After binding to the inhibitor, the peptide Phe798-Leu814 formed different degrees of unhelix, while for the peptide Glu1065-Ser1075, only a partial helix region was formed when allopurinol was bound. Through the protein structure analysis in the simulation process, we found that the distance between the active residues Arg880 and Thr1010 was reduced and the distance between Glu802 and Thr1010 was increased after the addition of inhibitors. The above simulation results showed the similarities and differences of the interaction between the three inhibitors binding to the protein. MM-PBSA calculations suggested that, among three inhibitors, allopurinol had the best binding effect with XO followed by daidzin and puerarin. This finding was consistent with previous experimental data. Our results can provide some useful clues for further gout treatment research.

Identifiants

pubmed: 34056319
doi: 10.1021/acsomega.1c00968
pmc: PMC8154014
doi:

Types de publication

Journal Article

Langues

eng

Pagination

11639-11649

Informations de copyright

© 2021 The Authors. Published by American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

Curr Pharm Des. 2021;27(2):143-158
pubmed: 32723252
Int J Mol Sci. 2020 May 05;21(9):
pubmed: 32380641
J Nat Prod. 2014 Jul 25;77(7):1693-9
pubmed: 25060641
J Comput Chem. 2009 Dec;30(16):2785-91
pubmed: 19399780
Hum Exp Toxicol. 2020 Mar;39(3):249-261
pubmed: 31640406
J Theor Biol. 2019 May 21;469:163-171
pubmed: 30844370
Life Sci. 2020 Oct 15;259:118290
pubmed: 32822713
Nutr Metab Cardiovasc Dis. 2019 Oct;29(10):1011-1022
pubmed: 31378626
Eur J Med Chem. 2019 Nov 1;181:111559
pubmed: 31376568
Rheumatology (Oxford). 2020 Sep 1;59(9):2340-2349
pubmed: 31873735
J Chem Phys. 2008 Aug 21;129(7):074102
pubmed: 19044755
PLoS One. 2017 Feb 9;12(2):e0171612
pubmed: 28182789
Phys Chem Chem Phys. 2016 Aug 10;18(32):22129-39
pubmed: 27444142
Int J Mol Sci. 2020 Mar 21;21(6):
pubmed: 32245216
Trends Biochem Sci. 2011 Apr;36(4):179-82
pubmed: 21345680
Chemphyschem. 2015 Oct 26;16(15):3278-89
pubmed: 26256268
J Chem Phys. 2010 Aug 28;133(8):084105
pubmed: 20815558
Front Mol Biosci. 2019 Jun 12;6:41
pubmed: 31245382
Bioinformatics. 2006 Nov 1;22(21):2695-6
pubmed: 16940322
Biochemistry. 2014 Jan 28;53(3):533-41
pubmed: 24397336
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:734-7
pubmed: 25570063
J Chem Inf Model. 2020 Jan 27;60(1):204-211
pubmed: 31887035
Expert Opin Drug Discov. 2015 May;10(5):449-61
pubmed: 25835573
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Curr Opin Chem Biol. 2016 Apr;31:179-87
pubmed: 27055119
ScientificWorldJournal. 2014 Feb 02;2014:536084
pubmed: 24672329
ChemMedChem. 2019 Apr 3;14(7):714-743
pubmed: 30740924
Biol Pharm Bull. 2007 Aug;30(8):1551-6
pubmed: 17666819
J Chem Inf Model. 2014 Jul 28;54(7):1951-62
pubmed: 24850022
Proteins. 2019 Jun;87(6):467-477
pubmed: 30714651
Chem Rev. 2019 Aug 28;119(16):9478-9508
pubmed: 31244000
Med Res Rev. 2018 Jul;38(4):1073-1125
pubmed: 28672082
J Cell Biochem. 2018 Nov 2;:
pubmed: 30390330
Biomed Pharmacother. 2020 Nov;131:110734
pubmed: 32942158
J Food Biochem. 2020 Jan;44(1):e13087
pubmed: 31680279
Zhongguo Zhong Yao Za Zhi. 2017 Oct;42(19):3703-3708
pubmed: 29235282

Auteurs

Yue Pan (Y)

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Zhongkui Lu (Z)

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Congcong Li (C)

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Renrui Qi (R)

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Hao Chang (H)

Jilin Province TeyiFood Biotechnology Company Limited, Erdao District, Changchun 130012, China.

Lu Han (L)

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Weiwei Han (W)

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Classifications MeSH