Enhanced Cycle Stability of Crumpled Graphene-Encapsulated Silicon Anodes via Polydopamine Sealing.
Journal
ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658
Informations de publication
Date de publication:
11 May 2021
11 May 2021
Historique:
received:
06
03
2021
accepted:
14
04
2021
entrez:
31
5
2021
pubmed:
1
6
2021
medline:
1
6
2021
Statut:
epublish
Résumé
Despite silicon being a promising candidate for next-generation lithium-ion battery anodes, self-pulverization and the formation of an unstable solid electrolyte interface, caused by the large volume expansion during lithiation/delithiation, have slowed its commercialization. In this work, we expand on a controllable approach to wrap silicon nanoparticles in a crumpled graphene shell by sealing this shell with a polydopamine-based coating. This provides improved structural stability to buffer the volume change of Si, as demonstrated by a remarkable cycle life, with anodes exhibiting a capacity of 1038 mA h/g after 200 cycles at 1 A/g. The resulting composite displays a high capacity of 1672 mA h/g at 0.1 A/g and can still retain 58% when the current density increases to 4 A/g. A systematic investigation of the impact of spray-drying parameters on the crumpled graphene morphology and its impact on battery performance is also provided.
Identifiants
pubmed: 34056382
doi: 10.1021/acsomega.1c01227
pmc: PMC8154123
doi:
Types de publication
Journal Article
Langues
eng
Pagination
12293-12305Informations de copyright
© 2021 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12001-5
pubmed: 12200546
Soft Matter. 2016 Sep 28;12(36):7435-44
pubmed: 27532509
ACS Nano. 2011 Nov 22;5(11):8943-9
pubmed: 21995602
Nano Lett. 2012 Jun 13;12(6):3315-21
pubmed: 22551164
J Phys Chem Lett. 2012 Jul 5;3(13):1824-9
pubmed: 26291867
Pharm Res. 2008 May;25(5):999-1022
pubmed: 18040761
Angew Chem Int Ed Engl. 2019 Jun 24;58(26):8824-8828
pubmed: 31050110
Nature. 2006 Mar 30;440(7084):688-91
pubmed: 16572174
Small. 2015 Jun 10;11(22):2661-8
pubmed: 25641827
ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34283-34290
pubmed: 30209939
Small. 2019 Apr;15(15):e1900069
pubmed: 30859742
ACS Appl Mater Interfaces. 2019 May 15;11(19):17375-17383
pubmed: 31008579
ACS Nano. 2012 Feb 28;6(2):1522-31
pubmed: 22217200
Nat Nanotechnol. 2014 Mar;9(3):187-92
pubmed: 24531496
ACS Nano. 2010 Aug 24;4(8):4806-14
pubmed: 20731455
ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2515-2525
pubmed: 29271631
Nano Lett. 2012 Apr 11;12(4):1996-2002
pubmed: 22429091
Adv Mater. 2014 Sep 17;26(35):6145-50
pubmed: 25047876
Chem Commun (Camb). 2019 Jan 2;55(3):361-364
pubmed: 30539943
J Environ Manage. 2021 Jan 1;277:111426
pubmed: 33032002
ACS Nano. 2017 Sep 26;11(9):8628-8635
pubmed: 28800223
Phys Rev Lett. 2011 Jul 22;107(4):045503
pubmed: 21867019
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):819-827
pubmed: 30516040
ACS Nano. 2018 Feb 27;12(2):1739-1746
pubmed: 29350526