Aerobic fitness is inversely associated with neurohemodynamic transduction and blood pressure variability in older adults.
Average real variability index
Cardiorespiratory fitness
Microneurography
Neurovascular ageing
Journal
GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
13
04
2021
accepted:
20
05
2021
pubmed:
1
6
2021
medline:
27
1
2022
entrez:
31
5
2021
Statut:
ppublish
Résumé
Higher aerobic fitness is independently associated with better cardiovascular health in older adults. The transduction of muscle sympathetic nerve activity (MSNA) into mean arterial pressure (MAP) responses provides important insight regarding beat-by-beat neural circulatory control. Aerobic fitness is negatively associated with peak MAP responses to spontaneous MSNA in young males. Whether this relationship exists in older adults is known. We tested the hypothesis that aerobic fitness was inversely related to sympathetic neurohemodynamic transduction and blood pressure variability (BPV) in older adults. Relative peak oxygen consumption (V̇O
Identifiants
pubmed: 34056679
doi: 10.1007/s11357-021-00389-z
pii: 10.1007/s11357-021-00389-z
pmc: PMC8602429
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2737-2748Subventions
Organisme : Department of Health
Pays : United Kingdom
Informations de copyright
© 2021. American Aging Association.
Références
McKinney J, Lithwick D, Morrison B, et al. The health benefits of physical activity and cardiorespiratory fitness. BCMJ. 2016;58:131–7.
Jackson AS, Sui X, Hébert JR, et al. Role of lifestyle and aging on the longitudinal change in cardiorespiratory fitness. Arch Intern Med. 2009;169:1781–7. https://doi.org/10.1001/archinternmed.2009.312 .
doi: 10.1001/archinternmed.2009.312
pubmed: 19858436
pmcid: 3379873
Laukkanen JA, Zaccardi F, Khan H, et al. Long-term change in cardiorespiratory fitness and all-cause mortality. Mayo Clin Proc. 2016;91:1183–8. https://doi.org/10.1016/j.mayocp.2016.05.014 .
doi: 10.1016/j.mayocp.2016.05.014
pubmed: 27444976
Hart EC, Charkoudian N. Sympathetic neural mechanisms in human blood pressure regulation. Curr Hypertens Rep. 2011;13:237–43. https://doi.org/10.1007/s11906-011-0191-1 .
doi: 10.1007/s11906-011-0191-1
pubmed: 21293977
Dinenno FA, Jones PP, Seals DR, Tanaka H. Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. Am J Physiol Circ Physiol. 2000;278:H1205–10. https://doi.org/10.1152/ajpheart.2000.278.4.H1205 .
doi: 10.1152/ajpheart.2000.278.4.H1205
Keir DA, Badrov MB, Tomlinson G, et al. Influence of sex and age on muscle sympathetic nerve activity of healthy normotensive adults. Hypertens (Dallas, Tex 1979). 2020; 76:997–1005. https://doi.org/10.1161/HYPERTENSIONAHA.120.15208
Fagius J, Wallin BG. Long-term variability and reproducibility of resting human muscle nerve sympathetic activity at rest, as reassessed after a decade. Clin Auton Res. 1993;3:201–5. https://doi.org/10.1007/BF01826234 .
doi: 10.1007/BF01826234
pubmed: 8400820
Hart ECJ, Charkoudian N. Sympathetic neural regulation of blood pressure: Influences of sex and aging. Physiology. 2014;29:8–15. https://doi.org/10.1152/physiol.00031.2013 .
doi: 10.1152/physiol.00031.2013
pubmed: 24382867
Ng AV, Callister R, Johnson DG, Seals DR. Endurance exercise training is associated with elevated basal sympathetic nerve activity in healthy older humans. J Appl Physiol. 1994;77:1366–74. https://doi.org/10.1152/jappl.1994.77.3.1366 .
doi: 10.1152/jappl.1994.77.3.1366
pubmed: 7836141
Studinger P, Goldstein R, Taylor JA. Age- and fitness-related alterations in vascular sympathetic control. J Physiol. 2009;587:2049–57. https://doi.org/10.1113/jphysiol.2009.170134 .
doi: 10.1113/jphysiol.2009.170134
pubmed: 19273575
pmcid: 2689342
Baker SE, Limberg JK, Scruggs ZM, et al. Greater influence of aerobic fitness on autonomic support of blood pressure in young women than in older women. Hypertension. 2020;75:1497–504. https://doi.org/10.1161/HYPERTENSIONAHA.119.14042 .
doi: 10.1161/HYPERTENSIONAHA.119.14042
pubmed: 32336237
Fairfax ST, Holwerda SW, Credeur DP, et al. The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man. J Physiol. 2013;591:3637–49. https://doi.org/10.1113/jphysiol.2013.250894 .
doi: 10.1113/jphysiol.2013.250894
pubmed: 23652594
pmcid: 3731619
Vranish JR, Holwerda SW, Young BE, et al. Exaggerated vasoconstriction to spontaneous bursts of muscle sympathetic nerve activity in healthy young black men. Hypertension. 2018;71:192–8. https://doi.org/10.1161/HYPERTENSIONAHA.117.10229 .
doi: 10.1161/HYPERTENSIONAHA.117.10229
pubmed: 29203629
Babcock MC, Robinson AT, Migdal KU, et al. Reducing dietary sodium to 1000 mg per day reduces neurovascular transduction without stimulating sympathetic outflow. Hypertension. 2019;73:587–93. https://doi.org/10.1161/HYPERTENSIONAHA.118.12074 .
doi: 10.1161/HYPERTENSIONAHA.118.12074
pubmed: 30661474
Hissen SL, Taylor CE. Sex differences in vascular transduction of sympathetic nerve activity. Clin Auton Res. 2020;30:381–92. https://doi.org/10.1007/s10286-020-00722-0 .
doi: 10.1007/s10286-020-00722-0
pubmed: 32865664
O’Brien MW, Ramsay D, Johnston W, Kimmerly DS Aerobic fitness and sympathetic responses to spontaneous muscle sympathetic nerve activity in young males. Clin Auton Res In Press. https://doi.org/10.1007/s10286-020-00734-w
Young BE, Greaney JL, Keller DM, Fadel PJ. Sympathetic transduction in humans: recent advances and methodological considerations. Am J Physiol Circ Physiol ajpheart. 2021; 00926.2020. https://doi.org/10.1152/ajpheart.00926.2020
Coovadia Y, Adler TE, Steinback CD, et al. Sex differences in dynamic blood pressure regulation: beat-by-beat responses to muscle sympathetic nerve activity. Am J Physiol Circ Physiol. 2020;319:H531–8. https://doi.org/10.1152/ajpheart.00245.2020 .
doi: 10.1152/ajpheart.00245.2020
Steinback CD, Fraser GM, Usselman CW, et al. Blunted sympathetic neurovascular transduction during normotensive pregnancy. J Physiol. 2019;597:3687–96. https://doi.org/10.1113/JP277714 .
doi: 10.1113/JP277714
pubmed: 31106429
Young BE, Holwerda SW, Vranish JR, et al. Sympathetic transduction in type 2 diabetes mellitus. Hypertension. 2019;74:201–7. https://doi.org/10.1161/HYPERTENSIONAHA.119.12928 .
doi: 10.1161/HYPERTENSIONAHA.119.12928
pubmed: 31188673
Vianna LC, Hart EC, Fairfax ST, et al. Influence of age and sex on the pressor response following a spontaneous burst of muscle sympathetic nerve activity. Am J Physiol Circ Physiol. 2012;302:H2419–27. https://doi.org/10.1152/ajpheart.01105.2011 .
doi: 10.1152/ajpheart.01105.2011
Berthelsen LF, Fraser GM, Simpson LL, et al. Highs and lows of sympathetic neurocardiovascular transduction: influence of altitude acclimatization and adaptation. Am J Physiol Circ Physiol. 2020;319:H1240–52. https://doi.org/10.1152/ajpheart.00364.2020 .
doi: 10.1152/ajpheart.00364.2020
Watso JC, Babcock MC, Migdal KU, et al The relation between habitual physical activity and sympathetic vascular transduction in healthy young adults. Clin Auton Res In Press. https://doi.org/10.1007/s10286-021-00770-0
Robinson AT, Babcock MC, Watso JC, et al. Relation between resting sympathetic outflow and vasoconstrictor responses to sympathetic nerve bursts: sex differences in healthy young adults. Am J Physiol Integr Comp Physiol. 2019;316:R463–71. https://doi.org/10.1152/ajpregu.00305.2018 .
doi: 10.1152/ajpregu.00305.2018
Wei FF, Li Y, Zhang L, et al. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated chinese. Hypertension. 2014;63:790–6. https://doi.org/10.1161/HYPERTENSIONAHA.113.02681 .
doi: 10.1161/HYPERTENSIONAHA.113.02681
pubmed: 24396027
Hissen SL, Macefield VG, Brown R, Taylor CE. Sympathetic baroreflex sensitivity is inversely related to vascular transduction in men but not women. Am J Physiol Circ Physiol. 2019;317:H1203–9. https://doi.org/10.1152/ajpheart.00501.2019 .
doi: 10.1152/ajpheart.00501.2019
Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60. https://doi.org/10.3758/BRM.41.4.1149 .
doi: 10.3758/BRM.41.4.1149
pubmed: 19897823
pmcid: 19897823
Briant LJB, Burchell AE, Ratcliffe LEK, et al. Quantifying sympathetic neuro-haemodynamic transduction at rest in humans: insights into sex, ageing and blood pressure control. J Physiol. 2016;594:4753–68. https://doi.org/10.1113/JP272167 .
doi: 10.1113/JP272167
pubmed: 5009776
pmcid: 5009776
Thijssen DHJ, Bruno RM, van Mil ACCM, et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur Heart J. 2019;40:2534–47. https://doi.org/10.1093/eurheartj/ehz350 .
doi: 10.1093/eurheartj/ehz350
pubmed: 31211361
Borg G. Psychophysical basis of perceived exertion. Med Sci Sport Exerc. 1982;14:377–81. https://doi.org/10.1249/00005768-198205000-00012 .
doi: 10.1249/00005768-198205000-00012
Hart EC, Head GA, Carter JR, et al. Recording sympathetic nerve activity in conscious humans and other mammals: guidelines and the road to standardization. Am J Physiol Circ Physiol. 2017;312:H1031–51. https://doi.org/10.1152/ajpheart.00703.2016 .
doi: 10.1152/ajpheart.00703.2016
Kimmerly DS, O’Leary DD, Shoemaker JK. Test–retest repeatability of muscle sympathetic nerve activity: influence of data analysis and head-up tilt. Auton Neurosci. 2004;114:61–71. https://doi.org/10.1016/j.autneu.2004.06.005 .
doi: 10.1016/j.autneu.2004.06.005
pubmed: 15331046
O’Brien MW, Petterson JL, Kimmerly DS. An open-source program to analyze spontaneous sympathetic neurohemodynamic transduction. J NeurophysiolIn Press. 2021; https://doi.org/10.1152/jn.00002.2021
Mena L, Pintos S, Queipo NV, et al. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23:505–11. https://doi.org/10.1097/01.hjh.0000160205.81652.5a .
doi: 10.1097/01.hjh.0000160205.81652.5a
pubmed: 15716690
Mena LJ, Felix VG, Melgarejo JD, Maestre GE. 24-Hour blood pressure variability assessed by average real variability: a systematic review and meta-analysis. J Am Heart Assoc. 2017; 6. https://doi.org/10.1161/JAHA.117.006895
Young BE, Kaur J, Vranish JR, et al. Augmented resting beat-to-beat blood pressure variability in young, healthy, non-Hispanic black men. Exp Physiol. 2020;105:1102–10. https://doi.org/10.1113/EP088535 .
doi: 10.1113/EP088535
pubmed: 32362031
pmcid: 7895300
Notarius CF, Murai H, Morris BL, Floras JS. Effect of fitness on reflex sympathetic neurovascular transduction in middle-age men. Med Sci Sport Exerc. 2012;44:232–7. https://doi.org/10.1249/MSS.0b013e31822a68a5 .
doi: 10.1249/MSS.0b013e31822a68a5
Billman GE, Cagnoli KL, Csepe T, et al. Exercise training-induced bradycardia: evidence for enhanced parasympathetic regulation without changes in intrinsic sinoatrial node function. J Appl Physiol. 2015;118:1344–55. https://doi.org/10.1152/japplphysiol.01111.2014 .
doi: 10.1152/japplphysiol.01111.2014
pubmed: 25749448
pmcid: 4451292
Poehlman ET, Danforth E. Endurance training increases metabolic rate and norepinephrine appearance rate in older individuals. Am J Physiol Metab. 1991;261:E233–9. https://doi.org/10.1152/ajpendo.1991.261.2.E233 .
doi: 10.1152/ajpendo.1991.261.2.E233
Esler MD, Hasking GJ, Willett IR, et al. Noradrenaline release and sympathetic nervous system activity. J Hypertens. 1985;3:117–29. https://doi.org/10.1097/00004872-198504000-00003 .
doi: 10.1097/00004872-198504000-00003
pubmed: 2991369
Ninomiya I, Malpas SC, Matsukawa K, et al. The amplitude of synchronized cardiac sympathetic nerve activity reflects the number of activated pre- and postganglionic fibers in anesthetized cats. J Auton Nerv Syst. 1993;45:139–47. https://doi.org/10.1016/0165-1838(93)90125-E .
doi: 10.1016/0165-1838(93)90125-E
pubmed: 8282946
Donato AJ, Lesniewski LA, Delp MD. Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles. J Physiol. 2007;579:115–25. https://doi.org/10.1113/jphysiol.2006.120055 .
doi: 10.1113/jphysiol.2006.120055
pubmed: 17082231
O’Brien MW, Ramsay D, Johnston W, Kimmerly D. The association between habitual posture and intensity-related physical activity with sympathetic neurohemodynamic transduction in young males.Clin Auton Res In Press. 2021; https://doi.org/10.1007/s10286-021-00802-9