Crosslinked Polydicyclopentadiene Nanoparticles via Ring-Opening Metathesis Polymerization-Induced Self-Assembly Approach.

crosslinked nanoparticles polymerization-driven self-assembly ring-opening metathesis polymerization

Journal

Macromolecular rapid communications
ISSN: 1521-3927
Titre abrégé: Macromol Rapid Commun
Pays: Germany
ID NLM: 9888239

Informations de publication

Date de publication:
Jul 2021
Historique:
revised: 21 04 2021
received: 10 03 2021
pubmed: 1 6 2021
medline: 27 7 2021
entrez: 31 5 2021
Statut: ppublish

Résumé

In this communication, the preparation of crosslinked polydicyclopentadiene (PDCPD) nanoparticles via ring-opening metathesis polymerization (ROMP)-induced self-assembly approach is reported. For the ROMPs, the macromolecular chain transfer agents (Macro-CTAs) are synthesized via the ring-opening polymerization (ROP) of ε-caprolactone (CL) with cis-2-butene-1,4-diol as the initiator. The ROMPs are performed with chloroform, tetrahydrofuran, toluene, 1,4-dioxane, and N,N-dimethylacetamide as the solvents, respectively, which are catalyzed with Grubbs second generation catalyst. It is found that the crosslinked PDCPD nanoparticles are obtained with spherical, cylindrical to planar morphologies, depending on the molecular weights of Macro-CTAs, the concentrations of DCPD and the natures of solvents. The polymerization induced self-assembly (ROMPISA) by the use of a non-norbornene-based macromolecular chain transfer agent provides a new and efficient approach to prepare crosslinked polymer nanoparticles.

Identifiants

pubmed: 34057258
doi: 10.1002/marc.202100155
doi:

Substances chimiques

Polymers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100155

Subventions

Organisme : National Natural Science Foundation of China
ID : 51973113
Organisme : National Natural Science Foundation of China
ID : 51133003
Organisme : National Natural Science Foundation of China
ID : 21774078

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

W. Zhou, Q. Qu, W. Yu, Z. An, ACS Macro Lett. 2014, 3, 1220.
Z. Wang, M. C. M. Van Oers, F. P. J. T. Rutjes, J. C. M. Van Hest, Angew. Chem., Int. Ed. 2012, 51, 10746.
W.-J. Zhang, C.-Y. Hong, C.-Y. Pan, Biomacromolecules 2016, 17, 2992.
W.-J. Zhang, C.-Y. Hong, C.-Y. Pan, Macromol. Rapid Commun. 2018, 40, 1800279.
D. E. Bergbreiter, Angew. Chem., Int. Ed. 1999, 38, 2870.
K.-.I. Fukukawa, R. Rossin, A. Hagooly, E. D. Pressly, J. N. Hunt, B. W. Messmore, C. J. Hawker, Biomacromolecules 2008, 9, 1329.
M. Shokeen, E. D. Pressly, A. Hagooly, A. Zheleznyak, N. Ramos, A. L. Fiamengo, M. J. Welch, C. J. Hawker, C. J. Anderson, ACS Nano 2011, 5, 738.
N. Csaba, M. Köping-Höggård, M. J. Alonso, Int. J. Pharm. 2009, 382, 205.
A. Kumar, K. M. Rao, S. S. Han, Carbohydr. Polym. 2018, 193, 228.
G. Liu, P. Liu, Colloid Surf. A-Physicochem. Eng. Asp. 2010, 354, 377.
N. Nikfarjam, N. T. Qazvini, Y. Deng, Colloid Polym. Sci. 2013, 292, 599.
W.-M. Wan, C. Y. Pan, Polym. Chem. 2010, 1, 1475.
M. Chen, J.-W. Li, W.-J. Zhang, C.-Y. Hong, C.-.Y. Pan, Macromolecules 2019, 52, 1140.
L. A. Fielding, M. J. Derry, V. Ladmiral, J. Rosselgong, A. M. Rodrigues, L. P. D. Ratcliffe, S. Sugihara, S. P. Armes, Chem. Sci. 2013, 4, 2081.
N. J. Warren, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 10174.
X. Wang, S. Man, J. Zheng, Z. An, ACS Macro Lett. 2018, 7, 1461.
J. Tan, Q. Xu, Y. Zhang, C. Huang, X. Li, J. He, L.i Zhang, Macromolecules 2018, 51, 7396.
W.-J. Zhang, C.-Y. Hong, C.-Y. Pan, ACS Appl. Mater. Interfaces 2017, 9, 15086.
W.-J. Zhang, C.-Y. Hong, C.-.Y. Pan, Biomacromolecules 2017, 18, 1210.
L. Qiu, C.-R. Xu, F. Zhong, C.-Y. Hong, C.-.Y. Pan, Macromol. Chem. Phys. 2016, 217, 1047.
B. Karagoz, L. Esser, H. T. Duong, J. S. Basuki, C. Boyer, T. P. Davis, Polym. Chem. 2014, 5, 350.
X. Zhang, A. F. Cardozo , S.i Chen , W. Zhang, C. Julcour , M. Lansalot, J.-F. Blanco , F. Gayet , H. Delmas , B. Charleux , E. Manoury , F. D'agosto, R. Poli , Chem. - Eur. J. 2014, 20, 15505.
G. Zheng, C. Pan, Macromolecules 2006, 39, 95.
W.-M. Wan, C.-Y. Pan, Macromolecules 2007, 40, 8897.
Z. An, Q. Shi, W. Tang, C. -. K. Tsung, C. J. Hawker, G. D. Stucky, J. Am. Chem. Soc. 2007, 129, 14493.
G. Liu, Q. Qiu, W. Shen, Z. An, Macromolecules 2011, 44, 5237.
W. Shen, Y. Chang, G. Liu, H. Wang, A. Cao, Z. An, Macromolecules 2011, 44, 2524.
S. Sugihara, S. P. Armes, A. Blanazs, A. L. Lewis, Soft Matter 2011, 7, 10787.
S. Chen, A. F. Cardozo, C. Julcour, J. -. F. Blanco, L. Barthe, F. Gayet, M. Lansalot, F. D'agosto, H. Delmas, E. Manoury, R. Poli, Polymer 2015, 72, 327.
L. Zhang, C. Song, J. Yu, D. Yang, M. Xie, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 5231.
J. Liu, Y. Liao, X. He, J. Yu, L. Ding, M. Xie, Macromol. Chem. Phys. 2011, 212, 55.
K.-Y. Yoon, I.-H. Lee, K. O. Kim, J. Jang, E. Lee, T.-L. Choi, J. Am. Chem. Soc. 2012, 134, 14291.
D. B. Wright, M. T. Proetto, M. A. Touve, N. C. Gianneschi, Polym. Chem. 2019, 10, 2996.
D. Le, M. Dilger, V. Pertici, S. Diabaté, D. Gigmes, C. Weiss, G. Delaittre, Angew. Chem., Int. Ed. 2019, 58, 4725.
D. B. Wright, M. A. Touve, L. Adamiak, N. C. Gianneschi, ACS Macro Lett. 2017, 6, 925.
J. Lim, Y. Cho, E.-H. Kang, S. Yang, J. Pyun, T.-L. Choi, K. Char, Chem. Commun. 2016, 52, 2485.
K.-Y. Yoon, S. Shin, Y.-J. Kim, I. Kim, E. Lee, T.-L. Choi, Macromol. Rapid Commun. 2015, 36, 1069.
K.-Y. Yoon, I.-H. Lee, T.-L. Choi, RSC Adv. 2014, 4, 49180.
D. B. Wright, M. A. Touve, M. P. Thompson, N. C. Gianneschi, ACS Macro Lett. 2018, 7, 401.
R. H. Grubbs, J. Macromol. Sci., Part A: Pure Appl. Chem. 1994, 31, 1829.
J. Kim, E.-H. Kang, T.-L. Choi, ACS Macro Lett. 2012, 1, 1090.
S. Shin, K.-Y. Yoon, T.-L. Choi, Macromolecules 2015, 48, 1390.
S. Shin, J. Lim, M. -. L. Gu, C. -. Y. Yu, M. Hong, K. Char, T.-L. Choi, Polym. Chem. 2017, 8, 7507.
S. Varlas, J. C. Foster, L. A. Arkinstall, J. R. Jones, R. Keogh, R. T. Mathers, R. K. O'reilly, ACS Macro Lett. 2019, 8, 466.
S. Varlas, J. C. Foster, R. K. O'reilly, Chem. Commun. 2019, 55, 9066.
S. Varlas, R. Keogh, Y. Xie, S. L. Horswell, J. C. Foster, R. K. O'reilly, J. Am. Chem. Soc. 2019, 141, 20234.
E.-H. Kang, S. Yang, S. Y. Yu, J. Kim, T.-L. Choi, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3058.
S. Yang, S.-Y. Kang, T.-L. Choi, J. Am. Chem. Soc. 2019, 141, 19138.
S. Shin, M.-L. Gu, C.-Y. Yu, J. Jeon, E. Lee, T.-L. Choi, J. Am. Chem. Soc. 2018, 140, 475.
S. Yang, S. Shin, I. Choi, J. Lee, T.-L. Choi, J. Am. Chem. Soc. 2017, 139, 3082.
S. Yang, T.-L. Choi, Chem. Sci. 2020, 11, 8416.
W. Jeong, M. R. Kessler, Chem. Mater. 2008, 20, 7060.

Auteurs

Honggang Mei (H)

College of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Bingjie Zhao (B)

College of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Huaming Wang (H)

College of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Sixun Zheng (S)

College of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals
Animals Huntington Disease Mitochondria Neurons Mice
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis

Classifications MeSH