Intrafemoral Delivery of Hematopoietic Progenitors.
Adoptive transfer
Bone marrow
Cell sorting
Hematopoiesis
Intrafemoral
Neutrophils
Progenitors
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
31
5
2021
pubmed:
1
6
2021
medline:
11
8
2021
Statut:
ppublish
Résumé
Hematopoiesis is a central process and is essential for the replenishment of short-lived leukocytes such as neutrophils. However, the molecular events underlining the developmental transition of quiescent hematopoietic stem cells into downstream progenitors and mature blood cells are not completely understood. Here, we describe the intrafemoral delivery of hematopoietic progenitors as a method to trace their development and differentiation lineage patterns within the bone marrow (BM) niche. Unlike other approaches, the direct adoptive transfer of progenitors into the BM cavity does not require prior irradiation preconditioning of recipient mice, and enables the delivery of lower cell numbers into the marrow space in a minimally perturbed environment. As a demonstrative example, we provide a protocol for the isolation of granulocyte-monocyte progenitors (GMP) by cell sorting, the delivery of these cells into recipient animals by intrafemoral transfer, and finally, the analysis of GMP-derived progenies by flow cytometry.
Identifiants
pubmed: 34057722
doi: 10.1007/978-1-0716-1425-9_13
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
151-161Références
Rieger MA, Schroeder T (2012) Hematopoiesis. Cold Spring Harb Perspect Biol 4(12):a008250. https://doi.org/10.1101/cshperspect.a008250
doi: 10.1101/cshperspect.a008250
pubmed: 23209149
pmcid: 3504436
Boettcher S, Manz MG (2017) Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol 38:345–357. https://doi.org/10.1016/j.it.2017.01.004
doi: 10.1016/j.it.2017.01.004
pubmed: 28216309
Bjerregaard MD, Jurlander J, Klausen P et al (2003) The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood 101:4322–4332. https://doi.org/10.1182/blood-2002-03-0835
doi: 10.1182/blood-2002-03-0835
pubmed: 12560239
Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33:657–670. https://doi.org/10.1016/j.immuni.2010.11.011
doi: 10.1016/j.immuni.2010.11.011
pubmed: 21094463
Ng LG, Ostuni R, Hidalgo A (2019) Heterogeneity of neutrophils. Nat Rev Immunol 19:255–265. https://doi.org/10.1038/s41577-019-0141-8
doi: 10.1038/s41577-019-0141-8
pubmed: 30816340
Evrard M, Kwok IWH, Chong SZ et al (2018) Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48:364–379 e368. https://doi.org/10.1016/j.immuni.2018.02.002
doi: 10.1016/j.immuni.2018.02.002
pubmed: 29466759
Kwok I, Becht E, Xia Y et al (2020) Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early Uni-potent neutrophil progenitor. Immunity 53:303–318.e5. https://doi.org/10.1016/j.immuni.2020.06.005
doi: 10.1016/j.immuni.2020.06.005
pubmed: 32579887
Naik SH, Sathe P, Park HY et al (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8:1217–1226. https://doi.org/10.1038/ni1522
doi: 10.1038/ni1522
pubmed: 17922015
Auffray C, Fogg DK, Narni-Mancinelli E et al (2009) CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 206:595–606. https://doi.org/10.1084/jem.20081385
doi: 10.1084/jem.20081385
pubmed: 19273628
pmcid: 2699130
Fogg DK, Sibon C, Miled C et al (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87. https://doi.org/10.1126/science.1117729
doi: 10.1126/science.1117729
pubmed: 16322423
Zhu YP, Padgett L, Dinh HQ et al (2018) Identification of an early Unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep 24:2329–2341 e2328. https://doi.org/10.1016/j.celrep.2018.07.097
doi: 10.1016/j.celrep.2018.07.097
pubmed: 30157427
pmcid: 6542273
Banfi A, Bianchi G, Galotto M et al (2001) Bone marrow stromal damage after chemo/radiotherapy: occurrence, consequences and possibilities of treatment. Leuk Lymphoma 42:863–870. https://doi.org/10.3109/10428190109097705
doi: 10.3109/10428190109097705
pubmed: 11697641
Green DE, Rubin CT (2014) Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 63:87–94. https://doi.org/10.1016/j.bone.2014.02.018
doi: 10.1016/j.bone.2014.02.018
pubmed: 24607941
Hettinger J, Richards DM, Hansson J et al (2013) Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14:821–830. https://doi.org/10.1038/ni.2638
doi: 10.1038/ni.2638
pubmed: 23812096
Varol C, Landsman L, Fogg DK et al (2007) Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 204:171–180. https://doi.org/10.1084/jem.20061011
doi: 10.1084/jem.20061011
pubmed: 17190836
pmcid: 2118434
Schlitzer A, Sivakamasundari V, Chen J et al (2015) Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat Immunol 16:718–728. https://doi.org/10.1038/ni.3200
doi: 10.1038/ni.3200
pubmed: 26054720
Chong SZ, Evrard M, Devi S et al (2016) CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. J Exp Med 213:2293–2314. https://doi.org/10.1084/jem.20160800
doi: 10.1084/jem.20160800
pubmed: 27811056
pmcid: 5068243
Rongvaux A, Willinger T, Martinek J et al (2014) Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 32:364–372. https://doi.org/10.1038/nbt.2858
doi: 10.1038/nbt.2858
pubmed: 24633240
pmcid: 4017589